A Statistical Analysis of Deep Federated Learning for Intrinsically Low-dimensional Data
- URL: http://arxiv.org/abs/2410.20659v1
- Date: Mon, 28 Oct 2024 01:36:25 GMT
- Title: A Statistical Analysis of Deep Federated Learning for Intrinsically Low-dimensional Data
- Authors: Saptarshi Chakraborty, Peter L. Bartlett,
- Abstract summary: Federated Learning (FL) has emerged as a groundbreaking paradigm in collaborative machine learning.
This paper investigates the generalization properties of deep federated regression within a two-stage sampling model.
- Score: 32.98264375121064
- License:
- Abstract: Federated Learning (FL) has emerged as a groundbreaking paradigm in collaborative machine learning, emphasizing decentralized model training to address data privacy concerns. While significant progress has been made in optimizing federated learning, the exploration of generalization error, particularly in heterogeneous settings, has been limited, focusing mainly on parametric cases. This paper investigates the generalization properties of deep federated regression within a two-stage sampling model. Our findings highlight that the intrinsic dimension, defined by the entropic dimension, is crucial for determining convergence rates when appropriate network sizes are used. Specifically, if the true relationship between response and explanatory variables is charecterized by a $\beta$-H\"older function and there are $n$ independent and identically distributed (i.i.d.) samples from $m$ participating clients, the error rate for participating clients scales at most as $\tilde{O}\left((mn)^{-2\beta/(2\beta + \bar{d}_{2\beta}(\lambda))}\right)$, and for non-participating clients, it scales as $\tilde{O}\left(\Delta \cdot m^{-2\beta/(2\beta + \bar{d}_{2\beta}(\lambda))} + (mn)^{-2\beta/(2\beta + \bar{d}_{2\beta}(\lambda))}\right)$. Here, $\bar{d}_{2\beta}(\lambda)$ represents the $2\beta$-entropic dimension of $\lambda$, the marginal distribution of the explanatory variables, and $\Delta$ characterizes the dependence between the sampling stages. Our results explicitly account for the "closeness" of clients, demonstrating that the convergence rates of deep federated learners depend on intrinsic rather than nominal high-dimensionality.
Related papers
- Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Convergence Analysis of Probability Flow ODE for Score-based Generative Models [5.939858158928473]
We study the convergence properties of deterministic samplers based on probability flow ODEs from both theoretical and numerical perspectives.
We prove the total variation between the target and the generated data distributions can be bounded above by $mathcalO(d3/4delta1/2)$ in the continuous time level.
arXiv Detail & Related papers (2024-04-15T12:29:28Z) - Analysis of the expected $L_2$ error of an over-parametrized deep neural
network estimate learned by gradient descent without regularization [7.977229957867868]
Recent results show that estimates defined by over-parametrized deep neural networks learned by applying gradient descent to a regularized empirical $L$ risk are universally consistent.
In this paper, we show that the regularization term is not necessary to obtain similar results.
arXiv Detail & Related papers (2023-11-24T17:04:21Z) - Reward-Free Model-Based Reinforcement Learning with Linear Function
Approximation [92.99933928528797]
We study the model-based reward-free reinforcement learning with linear function approximation for episodic Markov decision processes (MDPs)
In the planning phase, the agent is given a specific reward function and uses samples collected from the exploration phase to learn a good policy.
We show that to obtain an $epsilon$-optimal policy for arbitrary reward function, UCRL-RFE needs to sample at most $tilde O(H4d(H + d)epsilon-2)$ episodes.
arXiv Detail & Related papers (2021-10-12T23:03:58Z) - Locality defeats the curse of dimensionality in convolutional
teacher-student scenarios [69.2027612631023]
We show that locality is key in determining the learning curve exponent $beta$.
We conclude by proving, using a natural assumption, that performing kernel regression with a ridge that decreases with the size of the training set leads to similar learning curve exponents to those we obtain in the ridgeless case.
arXiv Detail & Related papers (2021-06-16T08:27:31Z) - Fundamental tradeoffs between memorization and robustness in random
features and neural tangent regimes [15.76663241036412]
We prove for a large class of activation functions that, if the model memorizes even a fraction of the training, then its Sobolev-seminorm is lower-bounded.
Experiments reveal for the first time, (iv) a multiple-descent phenomenon in the robustness of the min-norm interpolator.
arXiv Detail & Related papers (2021-06-04T17:52:50Z) - Online nonparametric regression with Sobolev kernels [99.12817345416846]
We derive the regret upper bounds on the classes of Sobolev spaces $W_pbeta(mathcalX)$, $pgeq 2, beta>fracdp$.
The upper bounds are supported by the minimax regret analysis, which reveals that in the cases $beta> fracd2$ or $p=infty$ these rates are (essentially) optimal.
arXiv Detail & Related papers (2021-02-06T15:05:14Z) - A scaling hypothesis for projected entangled-pair states [0.0]
We introduce a new paradigm for scaling simulations with projected entangled-pair states (PEPS) for critical strongly-correlated systems.
We use the effective correlation length $chi$ for inducing a collapse of data points, $f(D,chi)=f(xi(D,chi))$, for arbitrary values of $D$ and the environment bond dimension $chi$.
We test our hypothesis on the critical 3-D dimer model, the 3-D classical Ising model, and the 2-D quantum Heisenberg model.
arXiv Detail & Related papers (2021-02-05T12:48:01Z) - A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian
Kernel, a Precise Phase Transition, and the Corresponding Double Descent [85.77233010209368]
This article characterizes the exacts of random Fourier feature (RFF) regression, in the realistic setting where the number of data samples $n$ is all large and comparable.
This analysis also provides accurate estimates of training and test regression errors for large $n,p,N$.
arXiv Detail & Related papers (2020-06-09T02:05:40Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.