ODGS: 3D Scene Reconstruction from Omnidirectional Images with 3D Gaussian Splattings
- URL: http://arxiv.org/abs/2410.20686v1
- Date: Mon, 28 Oct 2024 02:45:13 GMT
- Title: ODGS: 3D Scene Reconstruction from Omnidirectional Images with 3D Gaussian Splattings
- Authors: Suyoung Lee, Jaeyoung Chung, Jaeyoo Huh, Kyoung Mu Lee,
- Abstract summary: We present ODGS, a novelization pipeline for omnidirectional images, with geometric interpretation.
The entire pipeline is parallelized using, achieving optimization and speeds 100 times faster than NeRF-based methods.
Results show ODGS restores fine details effectively, even when reconstructing large 3D scenes.
- Score: 48.72040500647568
- License:
- Abstract: Omnidirectional (or 360-degree) images are increasingly being used for 3D applications since they allow the rendering of an entire scene with a single image. Existing works based on neural radiance fields demonstrate successful 3D reconstruction quality on egocentric videos, yet they suffer from long training and rendering times. Recently, 3D Gaussian splatting has gained attention for its fast optimization and real-time rendering. However, directly using a perspective rasterizer to omnidirectional images results in severe distortion due to the different optical properties between two image domains. In this work, we present ODGS, a novel rasterization pipeline for omnidirectional images, with geometric interpretation. For each Gaussian, we define a tangent plane that touches the unit sphere and is perpendicular to the ray headed toward the Gaussian center. We then leverage a perspective camera rasterizer to project the Gaussian onto the corresponding tangent plane. The projected Gaussians are transformed and combined into the omnidirectional image, finalizing the omnidirectional rasterization process. This interpretation reveals the implicit assumptions within the proposed pipeline, which we verify through mathematical proofs. The entire rasterization process is parallelized using CUDA, achieving optimization and rendering speeds 100 times faster than NeRF-based methods. Our comprehensive experiments highlight the superiority of ODGS by delivering the best reconstruction and perceptual quality across various datasets. Additionally, results on roaming datasets demonstrate that ODGS restores fine details effectively, even when reconstructing large 3D scenes. The source code is available on our project page (https://github.com/esw0116/ODGS).
Related papers
- 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
We introduce 3D Convexting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multiview images.
3DCS achieves superior performance over 3DGS on benchmarks such as MipNeizer, Tanks and Temples, and Deep Blending.
Our results highlight the potential of 3D Convexting to become the new standard for high-quality scene reconstruction.
arXiv Detail & Related papers (2024-11-22T14:31:39Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - EVER: Exact Volumetric Ellipsoid Rendering for Real-time View Synthesis [72.53316783628803]
We present Exact Volumetric Ellipsoid Rendering (EVER), a method for real-time differentiable emission-only volume rendering.
Unlike recentization based approach by 3D Gaussian Splatting (3DGS), our primitive based representation allows for exact volume rendering.
We show that our method is more accurate with blending issues than 3DGS and follow-up work on view rendering.
arXiv Detail & Related papers (2024-10-02T17:59:09Z) - GSGAN: Adversarial Learning for Hierarchical Generation of 3D Gaussian Splats [20.833116566243408]
In this paper, we exploit Gaussian as a 3D representation for 3D GANs by leveraging its efficient and explicit characteristics.
We introduce a generator architecture with a hierarchical multi-scale Gaussian representation that effectively regularizes the position and scale of generated Gaussians.
Experimental results demonstrate that ours achieves a significantly faster rendering speed (x100) compared to state-of-the-art 3D consistent GANs.
arXiv Detail & Related papers (2024-06-05T05:52:20Z) - OmniGS: Fast Radiance Field Reconstruction using Omnidirectional Gaussian Splatting [27.543561055868697]
Current 3D Gaussian Splatting system only supports radiance field reconstruction using undistorted perspective images.
We present OmniGS, a novel omnidirectional Gaussian splatting system, to take advantage of omnidirectional images for fast radiance field reconstruction.
arXiv Detail & Related papers (2024-04-04T05:10:26Z) - Recent Advances in 3D Gaussian Splatting [31.3820273122585]
3D Gaussian Splatting has greatly accelerated rendering speed of novel view synthesis.
The explicit representation of 3D Gaussian Splatting facilitates editing tasks like dynamic reconstruction, geometry editing, and physical simulation.
We present a literature review of recent 3D Gaussian Splatting methods, which can be roughly classified into 3D reconstruction, 3D editing, and other downstream applications.
arXiv Detail & Related papers (2024-03-17T07:57:08Z) - Identifying Unnecessary 3D Gaussians using Clustering for Fast Rendering of 3D Gaussian Splatting [2.878831747437321]
3D-GS is a new rendering approach that outperforms the neural radiance field (NeRF) in terms of both speed and image quality.
We propose a computational reduction technique that quickly identifies unnecessary 3D Gaussians in real-time for rendering the current view.
For the Mip-NeRF360 dataset, the proposed technique excludes 63% of 3D Gaussians on average before the 2D image projection, which reduces the overall rendering by almost 38.3% without sacrificing peak-signal-to-noise-ratio (PSNR)
The proposed accelerator also achieves a speedup of 10.7x compared to a GPU
arXiv Detail & Related papers (2024-02-21T14:16:49Z) - GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization [62.13932669494098]
This paper presents a 3D Gaussian Inverse Rendering (GIR) method, employing 3D Gaussian representations to factorize the scene into material properties, light, and geometry.
We compute the normal of each 3D Gaussian using the shortest eigenvector, with a directional masking scheme forcing accurate normal estimation without external supervision.
We adopt an efficient voxel-based indirect illumination tracing scheme that stores direction-aware outgoing radiance in each 3D Gaussian to disentangle secondary illumination for approximating multi-bounce light transport.
arXiv Detail & Related papers (2023-12-08T16:05:15Z) - VoGE: A Differentiable Volume Renderer using Gaussian Ellipsoids for
Analysis-by-Synthesis [62.47221232706105]
We propose VoGE, which utilizes the Gaussian reconstruction kernels as volumetric primitives.
To efficiently render via VoGE, we propose an approximate closeform solution for the volume density aggregation and a coarse-to-fine rendering strategy.
VoGE outperforms SoTA when applied to various vision tasks, e.g., object pose estimation, shape/texture fitting, and reasoning.
arXiv Detail & Related papers (2022-05-30T19:52:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.