Rephrasing natural text data with different languages and quality levels for Large Language Model pre-training
- URL: http://arxiv.org/abs/2410.20796v1
- Date: Mon, 28 Oct 2024 07:30:05 GMT
- Title: Rephrasing natural text data with different languages and quality levels for Large Language Model pre-training
- Authors: Michael Pieler, Marco Bellagente, Hannah Teufel, Duy Phung, Nathan Cooper, Jonathan Tow, Paulo Rocha, Reshinth Adithyan, Zaid Alyafeai, Nikhil Pinnaparaju, Maksym Zhuravinskyi, Carlos Riquelme,
- Abstract summary: We build upon previous work by replicating existing results on C4 and extending them with our optimized rephrasing pipeline.
Our pipeline leads to increased performance on standard evaluation benchmarks in both the mono- and multilingual setup.
- Score: 12.29061850090405
- License:
- Abstract: Recently published work on rephrasing natural text data for pre-training LLMs has shown promising results when combining the original dataset with the synthetically rephrased data. We build upon previous work by replicating existing results on C4 and extending them with our optimized rephrasing pipeline to the English, German, Italian, and Spanish Oscar subsets of CulturaX. Our pipeline leads to increased performance on standard evaluation benchmarks in both the mono- and multilingual setup. In addition, we provide a detailed study of our pipeline, investigating the choice of the base dataset and LLM for the rephrasing, as well as the relationship between the model size and the performance after pre-training. By exploring data with different perceived quality levels, we show that gains decrease with higher quality. Furthermore, we find the difference in performance between model families to be bigger than between different model sizes. This highlights the necessity for detailed tests before choosing an LLM to rephrase large amounts of data. Moreover, we investigate the effect of pre-training with synthetic data on supervised fine-tuning. Here, we find increasing but inconclusive results that highly depend on the used benchmark. These results (again) highlight the need for better benchmarking setups. In summary, we show that rephrasing multilingual and low-quality data is a very promising direction to extend LLM pre-training data.
Related papers
- P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
Large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning.
Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks.
We present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks.
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - Improving Pretraining Data Using Perplexity Correlations [56.41097718862742]
We build a new statistical framework for data selection centered around estimates of perplexity-benchmark correlations.
In controlled pretraining experiments at the 160M parameter scale on 8 benchmarks, our approach outperforms DSIR on every benchmark.
arXiv Detail & Related papers (2024-09-09T17:23:29Z) - Scaling Retrieval-Based Language Models with a Trillion-Token Datastore [85.4310806466002]
We find that increasing the size of the datastore used by a retrieval-based LM monotonically improves language modeling and several downstream tasks without obvious saturation.
By plotting compute-optimal scaling curves with varied datastore, model, and pretraining data sizes, we show that using larger datastores can significantly improve model performance for the same training compute budget.
arXiv Detail & Related papers (2024-07-09T08:27:27Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
We propose a new framework that boosts the alignment of large language models (LLMs) with human preferences.
Our key idea is leveraging the human prior knowledge within the small (seed) data.
We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - A synthetic data approach for domain generalization of NLI models [13.840374911669167]
Natural Language Inference (NLI) remains an important benchmark task for LLMs.
We show that synthetic high-quality datasets can adapt NLI models for zero-shot use in downstream applications.
We show that models trained on this data have the best generalization to completely new downstream test settings.
arXiv Detail & Related papers (2024-02-19T18:55:16Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - When Less is More: Investigating Data Pruning for Pretraining LLMs at
Scale [12.94829977468838]
Large volumes of text data have contributed significantly to the development of large language models.
To date, efforts to prune datasets down to a higher quality subset have relied on hand-crafteds encoded as rule-based filters.
We take a wider view and explore scalable estimates of data quality that can be used to measure the quality of pretraining data.
arXiv Detail & Related papers (2023-09-08T19:34:05Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z) - How much pretraining data do language models need to learn syntax? [12.668478784932878]
Transformers-based pretrained language models achieve outstanding results in many well-known NLU benchmarks.
We study the impact of pretraining data size on the knowledge of the models using RoBERTa.
arXiv Detail & Related papers (2021-09-07T15:51:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.