Generative Example-Based Explanations: Bridging the Gap between Generative Modeling and Explainability
- URL: http://arxiv.org/abs/2410.20890v1
- Date: Mon, 28 Oct 2024 10:18:07 GMT
- Title: Generative Example-Based Explanations: Bridging the Gap between Generative Modeling and Explainability
- Authors: Philipp Vaeth, Alexander M. Fruehwald, Benjamin Paassen, Magda Gregorova,
- Abstract summary: We propose a novel probabilistic framework for local example-based explanations.
Our aim is to facilitate communication, foster rigor and transparency, and improve the quality of peer discussion and research progress.
- Score: 42.50219822975012
- License:
- Abstract: Recently, several methods have leveraged deep generative modeling to produce example-based explanations of decision algorithms for high-dimensional input data. Despite promising results, a disconnect exists between these methods and the classical explainability literature, which focuses on lower-dimensional data with semantically meaningful features. This conceptual and communication gap leads to misunderstandings and misalignments in goals and expectations. In this paper, we bridge this gap by proposing a novel probabilistic framework for local example-based explanations. Our framework integrates the critical characteristics of classical local explanation desiderata while being amenable to high-dimensional data and their modeling through deep generative models. Our aim is to facilitate communication, foster rigor and transparency, and improve the quality of peer discussion and research progress.
Related papers
- Interpreting Inflammation Prediction Model via Tag-based Cohort Explanation [5.356481722174994]
We propose a novel framework for identifying cohorts within a dataset based on local feature importance scores.
We evaluate our framework on a food-based inflammation prediction model and demonstrated that the framework can generate reliable explanations that match domain knowledge.
arXiv Detail & Related papers (2024-10-17T23:22:59Z) - Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales [3.242050660144211]
Saliency post-hoc explainability methods are important tools for understanding increasingly complex NLP models.
We present a methodology for incorporating rationales, which are text annotations explaining human decisions, into text classification models.
arXiv Detail & Related papers (2024-04-03T22:39:33Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Advanced Conditional Variational Autoencoders (A-CVAE): Towards
interpreting open-domain conversation generation via disentangling latent
feature representation [15.742077523458995]
This paper proposes to harness the generative model with a priori knowledge through a cognitive approach involving mesoscopic scale feature disentanglement.
We propose a new metric for open-domain dialogues, which can objectively evaluate the interpretability of the latent space distribution.
arXiv Detail & Related papers (2022-07-26T07:39:36Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Representations of epistemic uncertainty and awareness in data-driven
strategies [0.0]
We present a theoretical model for uncertainty in knowledge representation and its transfer mediated by agents.
We look at inequivalent knowledge representations in terms of inferences, preference relations, and information measures.
We discuss some implications of the proposed model for data-driven strategies.
arXiv Detail & Related papers (2021-10-21T21:18:21Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
We propose a multi-level contrastive learning paradigm to model the fine-grained quality of the responses with respect to the query.
A Rank-aware (RC) network is designed to construct the multi-level contrastive optimization objectives.
We build a Knowledge Inference (KI) component to capture the keyword knowledge from the reference during training and exploit such information to encourage the generation of informative words.
arXiv Detail & Related papers (2020-09-19T02:41:04Z) - Adversarial Mutual Information for Text Generation [62.974883143784616]
We propose Adversarial Mutual Information (AMI): a text generation framework.
AMI is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target.
We show that AMI has potential to lead to a tighter lower bound of maximum mutual information.
arXiv Detail & Related papers (2020-06-30T19:11:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.