Valid Bootstraps for Networks with Applications to Network Visualisation
- URL: http://arxiv.org/abs/2410.20895v2
- Date: Tue, 29 Oct 2024 09:21:23 GMT
- Title: Valid Bootstraps for Networks with Applications to Network Visualisation
- Authors: Emerald Dilworth, Ed Davis, Daniel J. Lawson,
- Abstract summary: Quantifying uncertainty in networks is an important step in modelling relationships and interactions between entities.
We consider the challenge of bootstrapping an inhomogeneous random graph when only a single observation of the network is made.
We propose a principled, novel, distribution-free network bootstrap using k-nearest neighbour smoothing.
- Score: 0.0
- License:
- Abstract: Quantifying uncertainty in networks is an important step in modelling relationships and interactions between entities. We consider the challenge of bootstrapping an inhomogeneous random graph when only a single observation of the network is made and the underlying data generating function is unknown. We utilise an exchangeable network test that can empirically validate bootstrap samples generated by any method, by testing if the observed and bootstrapped networks are statistically distinguishable. We find that existing methods fail this test. To address this, we propose a principled, novel, distribution-free network bootstrap using k-nearest neighbour smoothing, that can regularly pass this exchangeable network test in both synthetic and real-data scenarios. We demonstrate the utility of this work in combination with the popular data visualisation method t-SNE, where uncertainty estimates from bootstrapping are used to explain whether visible structures represent real statistically sound structures.
Related papers
- Network two-sample test for block models [16.597465729143813]
We consider the two-sample testing problem for networks, where the goal is to determine whether two sets of networks originated from the same model.
We adopt the block model (SBM) for network distributions, due to their interpretability and the potential to approximate more general models.
We introduce an efficient algorithm to match estimated network parameters, allowing us to properly combine and contrast information within and across samples, leading to a powerful test.
arXiv Detail & Related papers (2024-06-10T04:28:37Z) - Cross-Inferential Networks for Source-free Unsupervised Domain
Adaptation [17.718392065388503]
We propose to explore a new method called cross-inferential networks (CIN)
Our main idea is that, when we adapt the network model to predict the sample labels from encoded features, we use these prediction results to construct new training samples with derived labels.
Our experimental results on benchmark datasets demonstrate that our proposed CIN approach can significantly improve the performance of source-free UDA.
arXiv Detail & Related papers (2023-06-29T14:04:24Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Latent Network Embedding via Adversarial Auto-encoders [15.656374849760734]
We propose a latent network embedding model based on adversarial graph auto-encoders.
Under this framework, the problem of discovering latent structures is formulated as inferring the latent ties from partial observations.
arXiv Detail & Related papers (2021-09-30T16:49:46Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - CREPO: An Open Repository to Benchmark Credal Network Algorithms [78.79752265884109]
Credal networks are imprecise probabilistic graphical models based on, so-called credal, sets of probability mass functions.
A Java library called CREMA has been recently released to model, process and query credal networks.
We present CREPO, an open repository of synthetic credal networks, provided together with the exact results of inference tasks on these models.
arXiv Detail & Related papers (2021-05-10T07:31:59Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates [11.580916951856256]
We present a time-dynamic approach to model uncertainties of instance segmentation networks.
We apply this approach to the detection of false positives and the estimation of prediction quality.
The proposed method only requires a readily trained neural network and video sequence input.
arXiv Detail & Related papers (2020-12-14T13:39:05Z) - Joint Inference of Diffusion and Structure in Partially Observed Social
Networks Using Coupled Matrix Factorization [3.399624105745357]
In this paper, a model is learned from partially observed data to infer unobserved diffusion and structure networks.
The interrelations among links of nodes and cascade processes are utilized in the proposed method via learning and low-dimensional latent factors.
Experiments on these synthetic and real-world datasets show that the proposed method successfully detects invisible social behaviors, predicts links, and identifies latent features.
arXiv Detail & Related papers (2020-10-03T17:48:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.