SPOTS-10: Animal Pattern Benchmark Dataset for Machine Learning Algorithms
- URL: http://arxiv.org/abs/2410.21044v1
- Date: Mon, 28 Oct 2024 14:00:02 GMT
- Title: SPOTS-10: Animal Pattern Benchmark Dataset for Machine Learning Algorithms
- Authors: John Atanbori,
- Abstract summary: SPOTS-10 is an extensive collection of grayscale images showcasing diverse patterns in ten animal species.
This dataset is a resource for evaluating machine learning algorithms in situ.
The training set comprises 40,000 images, while the test set contains 10,000 images.
- Score: 0.08158530638728499
- License:
- Abstract: Recognising animals based on distinctive body patterns, such as stripes, spots, or other markings, in night images is a complex task in computer vision. Existing methods for detecting animals in images often rely on colour information, which is not always available in night images, posing a challenge for pattern recognition in such conditions. Nevertheless, recognition at night-time is essential for most wildlife, biodiversity, and conservation applications. The SPOTS-10 dataset was created to address this challenge and to provide a resource for evaluating machine learning algorithms in situ. This dataset is an extensive collection of grayscale images showcasing diverse patterns found in ten animal species. Specifically, SPOTS-10 contains 50,000 32 x 32 grayscale images, divided into ten categories, with 5,000 images per category. The training set comprises 40,000 images, while the test set contains 10,000 images. The SPOTS-10 dataset is freely available on the project GitHub page: https://github.com/Amotica/SPOTS-10.git by cloning the repository.
Related papers
- Perceptual Artifacts Localization for Image Synthesis Tasks [59.638307505334076]
We introduce a novel dataset comprising 10,168 generated images, each annotated with per-pixel perceptual artifact labels.
A segmentation model, trained on our proposed dataset, effectively localizes artifacts across a range of tasks.
We propose an innovative zoom-in inpainting pipeline that seamlessly rectifies perceptual artifacts in the generated images.
arXiv Detail & Related papers (2023-10-09T10:22:08Z) - Bugs in the Data: How ImageNet Misrepresents Biodiversity [98.98950914663813]
We analyze the 13,450 images from 269 classes that represent wild animals in the ImageNet-1k validation set.
We find that many of the classes are ill-defined or overlapping, and that 12% of the images are incorrectly labeled.
We also find that both the wildlife-related labels and images included in ImageNet-1k present significant geographical and cultural biases.
arXiv Detail & Related papers (2022-08-24T17:55:48Z) - VizWiz-FewShot: Locating Objects in Images Taken by People With Visual
Impairments [74.72656607288185]
We introduce a few-shot localization dataset originating from photographers who authentically were trying to learn about the visual content in the images they took.
It includes nearly 10,000 segmentations of 100 categories in over 4,500 images that were taken by people with visual impairments.
Compared to existing few-shot object detection and instance segmentation datasets, our dataset is the first to locate holes in objects.
arXiv Detail & Related papers (2022-07-24T20:44:51Z) - Oracle-MNIST: a Realistic Image Dataset for Benchmarking Machine
Learning Algorithms [57.29464116557734]
We introduce the Oracle-MNIST dataset, comprising of 28$times $28 grayscale images of 30,222 ancient characters.
The training set totally consists of 27,222 images, and the test set contains 300 images per class.
arXiv Detail & Related papers (2022-05-19T09:57:45Z) - cofga: A Dataset for Fine Grained Classification of Objects from Aerial
Imagery [2.169919643934826]
We introduce COFGA, a new open dataset for the advancement of fine-grained classification research.
The 2,104 images in the dataset are collected from an airborne imaging system at 5 15 cm ground sampling distance.
The 14,256 annotated objects in the dataset were classified into 2 classes, 15 subclasses, 14 unique features, and 8 perceived colors.
arXiv Detail & Related papers (2021-05-26T18:39:47Z) - Museum Painting Retrieval [0.0]
We implement a query by example retrieval system for finding paintings in a museum image collection using classic computer vision techniques.
We study the performance of the color, texture, text and feature descriptors in datasets with different perturbations in the images.
arXiv Detail & Related papers (2021-05-11T09:28:14Z) - Object Detection in Aerial Images: A Large-Scale Benchmark and
Challenges [124.48654341780431]
We present a large-scale dataset of Object deTection in Aerial images (DOTA) and comprehensive baselines for ODAI.
The proposed DOTA dataset contains 1,793,658 object instances of 18 categories of oriented-bounding-box annotations collected from 11,268 aerial images.
We build baselines covering 10 state-of-the-art algorithms with over 70 configurations, where the speed and accuracy performances of each model have been evaluated.
arXiv Detail & Related papers (2021-02-24T11:20:55Z) - How many images do I need? Understanding how sample size per class
affects deep learning model performance metrics for balanced designs in
autonomous wildlife monitoring [0.0]
We explore in depth the issues of deep learning model performance for progressively increasing per class (species) sample sizes.
We provide ecologists with an approximation formula to estimate how many images per animal species they need for certain accuracy level a priori.
arXiv Detail & Related papers (2020-10-16T06:28:35Z) - Automatic Detection and Recognition of Individuals in Patterned Species [4.163860911052052]
We develop a framework for automatic detection and recognition of individuals in different patterned species.
We use the recently proposed Faster-RCNN object detection framework to efficiently detect animals in images.
We evaluate our recognition system on zebra and jaguar images to show generalization to other patterned species.
arXiv Detail & Related papers (2020-05-06T15:29:21Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.