Enhancing Learned Image Compression via Cross Window-based Attention
- URL: http://arxiv.org/abs/2410.21144v4
- Date: Wed, 12 Feb 2025 19:20:49 GMT
- Title: Enhancing Learned Image Compression via Cross Window-based Attention
- Authors: Priyanka Mudgal, Feng Liu,
- Abstract summary: We propose a CNN-based solution integrated with a feature encoding module.
We evaluate our method on the Kodak and CLIC datasets and demonstrate that our approach is effective and on par with state-of-the-art methods.
- Score: 4.673285689826945
- License:
- Abstract: In recent years, learned image compression methods have demonstrated superior rate-distortion performance compared to traditional image compression methods. Recent methods utilize convolutional neural networks (CNN), variational autoencoders (VAE), invertible neural networks (INN), and transformers. Despite their significant contributions, a main drawback of these models is their poor performance in capturing local redundancy. Therefore, to leverage global features along with local redundancy, we propose a CNN-based solution integrated with a feature encoding module. The feature encoding module encodes important features before feeding them to the CNN and then utilizes cross-scale window-based attention, which further captures local redundancy. Cross-scale window-based attention is inspired by the attention mechanism in transformers and effectively enlarges the receptive field. Both the feature encoding module and the cross-scale window-based attention module in our architecture are flexible and can be incorporated into any other network architecture. We evaluate our method on the Kodak and CLIC datasets and demonstrate that our approach is effective and on par with state-of-the-art methods. Our code is publicly available at https://github.com/prmudgal/CWAM_IC_ISVC. .
Related papers
- UTSRMorph: A Unified Transformer and Superresolution Network for Unsupervised Medical Image Registration [4.068692674719378]
Complicated image registration is a key issue in medical image analysis.
We propose a novel unsupervised image registration method named the unified Transformer and superresolution (UTSRMorph) network.
arXiv Detail & Related papers (2024-10-27T06:28:43Z) - WiTUnet: A U-Shaped Architecture Integrating CNN and Transformer for Improved Feature Alignment and Local Information Fusion [16.41082757280262]
Low-dose computed tomography (LDCT) has become the technology of choice for diagnostic medical imaging, given its lower radiation dose compared to standard CT.
In this paper, we introduce WiTUnet, a novel LDCT image denoising method that utilizes nested, dense skip pathways instead of traditional skip connections.
arXiv Detail & Related papers (2024-04-15T07:53:07Z) - Boosting Neural Representations for Videos with a Conditional Decoder [28.073607937396552]
Implicit neural representations (INRs) have emerged as a promising approach for video storage and processing.
This paper introduces a universal boosting framework for current implicit video representation approaches.
arXiv Detail & Related papers (2024-02-28T08:32:19Z) - Dynamic Semantic Compression for CNN Inference in Multi-access Edge
Computing: A Graph Reinforcement Learning-based Autoencoder [82.8833476520429]
We propose a novel semantic compression method, autoencoder-based CNN architecture (AECNN) for effective semantic extraction and compression in partial offloading.
In the semantic encoder, we introduce a feature compression module based on the channel attention mechanism in CNNs, to compress intermediate data by selecting the most informative features.
In the semantic decoder, we design a lightweight decoder to reconstruct the intermediate data through learning from the received compressed data to improve accuracy.
arXiv Detail & Related papers (2024-01-19T15:19:47Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Accurate Image Restoration with Attention Retractable Transformer [50.05204240159985]
We propose Attention Retractable Transformer (ART) for image restoration.
ART presents both dense and sparse attention modules in the network.
We conduct extensive experiments on image super-resolution, denoising, and JPEG compression artifact reduction tasks.
arXiv Detail & Related papers (2022-10-04T07:35:01Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks.
Transformers that need to incorporate contextual information to extract features dynamically are neglected.
We propose a lightweight Cross-receptive Focused Inference Network (CFIN) that consists of a cascade of CT Blocks mixed with CNN and Transformer.
arXiv Detail & Related papers (2022-07-06T16:32:29Z) - Transformer Compressed Sensing via Global Image Tokens [4.722333456749269]
We propose a novel image decomposition that naturally embeds images into low-resolution inputs.
We replace CNN components in a well-known CS-MRI neural network with TNN blocks and demonstrate the improvements afforded by KD.
arXiv Detail & Related papers (2022-03-24T05:56:30Z) - The Devil Is in the Details: Window-based Attention for Image
Compression [58.1577742463617]
Most existing learned image compression models are based on Convolutional Neural Networks (CNNs)
In this paper, we study the effects of multiple kinds of attention mechanisms for local features learning, then introduce a more straightforward yet effective window-based local attention block.
The proposed window-based attention is very flexible which could work as a plug-and-play component to enhance CNN and Transformer models.
arXiv Detail & Related papers (2022-03-16T07:55:49Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
Less attention vIsion Transformer builds upon the fact that convolutions, fully-connected layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences.
The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation.
arXiv Detail & Related papers (2021-05-29T05:26:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.