M2rc-Eval: Massively Multilingual Repository-level Code Completion Evaluation
- URL: http://arxiv.org/abs/2410.21157v1
- Date: Mon, 28 Oct 2024 15:58:41 GMT
- Title: M2rc-Eval: Massively Multilingual Repository-level Code Completion Evaluation
- Authors: Jiaheng Liu, Ken Deng, Congnan Liu, Jian Yang, Shukai Liu, He Zhu, Peng Zhao, Linzheng Chai, Yanan Wu, Ke Jin, Ge Zhang, Zekun Wang, Guoan Zhang, Bangyu Xiang, Wenbo Su, Bo Zheng,
- Abstract summary: We propose a massively multilingual repository-level code completion benchmark covering 18 programming languages.
Two types of fine-grained annotations (i.e., bucket-level and semantic-level) are provided on different completion scenarios.
We also curate a massively multilingual instruction corpora M2RC- INSTRUCT dataset to improve the repository-level code completion abilities of existing code Large Language Models.
- Score: 39.6123499117046
- License:
- Abstract: Repository-level code completion has drawn great attention in software engineering, and several benchmark datasets have been introduced. However, existing repository-level code completion benchmarks usually focus on a limited number of languages (<5), which cannot evaluate the general code intelligence abilities across different languages for existing code Large Language Models (LLMs). Besides, the existing benchmarks usually report overall average scores of different languages, where the fine-grained abilities in different completion scenarios are ignored. Therefore, to facilitate the research of code LLMs in multilingual scenarios, we propose a massively multilingual repository-level code completion benchmark covering 18 programming languages (called M2RC-EVAL), and two types of fine-grained annotations (i.e., bucket-level and semantic-level) on different completion scenarios are provided, where we obtain these annotations based on the parsed abstract syntax tree. Moreover, we also curate a massively multilingual instruction corpora M2RC- INSTRUCT dataset to improve the repository-level code completion abilities of existing code LLMs. Comprehensive experimental results demonstrate the effectiveness of our M2RC-EVAL and M2RC-INSTRUCT.
Related papers
- LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models [89.13128402847943]
We present LUSIFER, a novel zero-shot approach that adapts LLM-based embedding models for multilingual tasks without requiring multilingual supervision.
LUSIFER's architecture combines a multilingual encoder, serving as a language-universal learner, with an LLM-based embedding model optimized for embedding-specific tasks.
We introduce a new benchmark encompassing 5 primary embedding tasks, 123 diverse datasets, and coverage across 14 languages.
arXiv Detail & Related papers (2025-01-01T15:43:07Z) - ExecRepoBench: Multi-level Executable Code Completion Evaluation [45.963424627710765]
We introduce a novel framework for enhancing code completion in software development through the creation of a repository-level benchmark ExecRepoBench.
We present a multi-level grammar-based completion methodology conditioned on the abstract syntax tree to mask code fragments at various logical units.
Then, we fine-tune the open-source LLM with 7B parameters on Repo-Instruct to produce a strong code completion baseline model Qwen2.5-Coder-Instruct-C.
arXiv Detail & Related papers (2024-12-16T17:14:35Z) - Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following [51.18383180774354]
We introduce Multi-IF, a new benchmark designed to assess Large Language Models' proficiency in following multi-turn and multilingual instructions.
Our evaluation of 14 state-of-the-art LLMs on Multi-IF reveals that it presents a significantly more challenging task than existing benchmarks.
languages with non-Latin scripts (Hindi, Russian, and Chinese) generally exhibit higher error rates, suggesting potential limitations in the models' multilingual capabilities.
arXiv Detail & Related papers (2024-10-21T00:59:47Z) - mHumanEval -- A Multilingual Benchmark to Evaluate Large Language Models for Code Generation [28.531581489405745]
mHumanEval is an extended benchmark supporting prompts in over 200 natural languages.
We provide expert human translations for 15 diverse natural languages (NLs)
We conclude by analyzing the multilingual code generation capabilities of state-of-the-art (SOTA) Code LLMs.
arXiv Detail & Related papers (2024-10-19T08:44:26Z) - OMGEval: An Open Multilingual Generative Evaluation Benchmark for Large
Language Models [59.54423478596468]
We introduce OMGEval, the first Open-source Multilingual Generative test set that can assess the capability of LLMs in different languages.
For each language, OMGEval provides 804 open-ended questions, covering a wide range of important capabilities of LLMs.
Specifically, the current version of OMGEval includes 5 languages (i.e., Zh, Ru, Fr, Es, Ar)
arXiv Detail & Related papers (2024-02-21T04:42:41Z) - XSemPLR: Cross-Lingual Semantic Parsing in Multiple Natural Languages
and Meaning Representations [25.50509874992198]
Cross-Lingual Semantic Parsing aims to translate queries in multiple natural languages into meaning representations.
Existing CLSP models are separately proposed and evaluated on datasets of limited tasks and applications.
We present XSemPLR, a unified benchmark for cross-lingual semantic parsing featured with 22 natural languages and 8 meaning representations.
arXiv Detail & Related papers (2023-06-07T01:09:37Z) - xCodeEval: A Large Scale Multilingual Multitask Benchmark for Code
Understanding, Generation, Translation and Retrieval [32.60391966381949]
We introduce xCodeEval, the largest executable multilingual multitask benchmark to date.
It features a total of $7$ tasks involving code understanding, generation, translation and retrieval.
xCodeEval adopts an execution-based evaluation and offers a multilingual code execution engine, ExecEval.
arXiv Detail & Related papers (2023-03-06T10:08:51Z) - Multi-lingual Evaluation of Code Generation Models [82.7357812992118]
We present new benchmarks on evaluation code generation models: MBXP and Multilingual HumanEval, and MathQA-X.
These datasets cover over 10 programming languages.
We are able to assess the performance of code generation models in a multi-lingual fashion.
arXiv Detail & Related papers (2022-10-26T17:17:06Z) - X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained
Language Models [103.75890012041366]
Language models (LMs) have proven surprisingly successful at capturing factual knowledge.
However, studies on LMs' factual representation ability have almost invariably been performed on English.
We create a benchmark of cloze-style probes for 23 typologically diverse languages.
arXiv Detail & Related papers (2020-10-13T05:29:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.