Belief in the Machine: Investigating Epistemological Blind Spots of Language Models
- URL: http://arxiv.org/abs/2410.21195v1
- Date: Mon, 28 Oct 2024 16:38:20 GMT
- Title: Belief in the Machine: Investigating Epistemological Blind Spots of Language Models
- Authors: Mirac Suzgun, Tayfun Gur, Federico Bianchi, Daniel E. Ho, Thomas Icard, Dan Jurafsky, James Zou,
- Abstract summary: Language models (LMs) are essential for reliable decision-making in fields like healthcare, law, and journalism.
This study systematically evaluates the capabilities of modern LMs, including GPT-4, Claude-3, and Llama-3, using a new dataset, KaBLE.
Our results reveal key limitations. First, while LMs achieve 86% accuracy on factual scenarios, their performance drops significantly with false scenarios.
Second, LMs struggle with recognizing and affirming personal beliefs, especially when those beliefs contradict factual data.
- Score: 51.63547465454027
- License:
- Abstract: As language models (LMs) become integral to fields like healthcare, law, and journalism, their ability to differentiate between fact, belief, and knowledge is essential for reliable decision-making. Failure to grasp these distinctions can lead to significant consequences in areas such as medical diagnosis, legal judgments, and dissemination of fake news. Despite this, current literature has largely focused on more complex issues such as theory of mind, overlooking more fundamental epistemic challenges. This study systematically evaluates the epistemic reasoning capabilities of modern LMs, including GPT-4, Claude-3, and Llama-3, using a new dataset, KaBLE, consisting of 13,000 questions across 13 tasks. Our results reveal key limitations. First, while LMs achieve 86% accuracy on factual scenarios, their performance drops significantly with false scenarios, particularly in belief-related tasks. Second, LMs struggle with recognizing and affirming personal beliefs, especially when those beliefs contradict factual data, which raises concerns for applications in healthcare and counseling, where engaging with a person's beliefs is critical. Third, we identify a salient bias in how LMs process first-person versus third-person beliefs, performing better on third-person tasks (80.7%) compared to first-person tasks (54.4%). Fourth, LMs lack a robust understanding of the factive nature of knowledge, namely, that knowledge inherently requires truth. Fifth, LMs rely on linguistic cues for fact-checking and sometimes bypass the deeper reasoning. These findings highlight significant concerns about current LMs' ability to reason about truth, belief, and knowledge while emphasizing the need for advancements in these areas before broad deployment in critical sectors.
Related papers
- A Survey on the Honesty of Large Language Models [115.8458596738659]
Honesty is a fundamental principle for aligning large language models (LLMs) with human values.
Despite promising, current LLMs still exhibit significant dishonest behaviors.
arXiv Detail & Related papers (2024-09-27T14:34:54Z) - WellDunn: On the Robustness and Explainability of Language Models and Large Language Models in Identifying Wellness Dimensions [46.60244609728416]
Language Models (LMs) are being proposed for mental health applications where the heightened risk of adverse outcomes means predictive performance may not be a litmus test of a model's utility in clinical practice.
We introduce an evaluation design that focuses on the robustness and explainability of LMs in identifying Wellness Dimensions (WDs)
We reveal four surprising results about LMs/LLMs.
arXiv Detail & Related papers (2024-06-17T19:50:40Z) - Exploring the Potential of the Large Language Models (LLMs) in Identifying Misleading News Headlines [2.0330684186105805]
This study explores the efficacy of Large Language Models (LLMs) in identifying misleading versus non-misleading news headlines.
Our analysis reveals significant variance in model performance, with ChatGPT-4 demonstrating superior accuracy.
arXiv Detail & Related papers (2024-05-06T04:06:45Z) - Trustworthy Large Models in Vision: A Survey [8.566163225282724]
Large Models (LMs) have revolutionized various fields of deep learning, including Natural Language Processing (NLP) to Computer Vision (CV)
LMs are increasingly challenged and criticized by academia and industry due to their powerful performance but untrustworthy behavior.
We summarize four relevant concerns that obstruct the trustworthy usage in vision of LMs in this survey, including 1) human misuse, 2) vulnerability, 3) inherent issue and 4) interpretability.
We hope this survey will facilitate readers' understanding of this field, promote alignment of LMs with human expectations and enable trustworthy LMs to serve as welfare rather than disaster for human society.
arXiv Detail & Related papers (2023-11-16T08:49:46Z) - Language Models Hallucinate, but May Excel at Fact Verification [89.0833981569957]
Large language models (LLMs) frequently "hallucinate," resulting in non-factual outputs.
Even GPT-3.5 produces factual outputs less than 25% of the time.
This underscores the importance of fact verifiers in order to measure and incentivize progress.
arXiv Detail & Related papers (2023-10-23T04:39:01Z) - The Perils & Promises of Fact-checking with Large Language Models [55.869584426820715]
Large Language Models (LLMs) are increasingly trusted to write academic papers, lawsuits, and news articles.
We evaluate the use of LLM agents in fact-checking by having them phrase queries, retrieve contextual data, and make decisions.
Our results show the enhanced prowess of LLMs when equipped with contextual information.
While LLMs show promise in fact-checking, caution is essential due to inconsistent accuracy.
arXiv Detail & Related papers (2023-10-20T14:49:47Z) - FELM: Benchmarking Factuality Evaluation of Large Language Models [40.78878196872095]
We introduce a benchmark for Factuality Evaluation of large Language Models, referred to as felm.
We collect responses generated from large language models and annotate factuality labels in a fine-grained manner.
Our findings reveal that while retrieval aids factuality evaluation, current LLMs are far from satisfactory to faithfully detect factual errors.
arXiv Detail & Related papers (2023-10-01T17:37:31Z) - Navigating the Grey Area: How Expressions of Uncertainty and
Overconfidence Affect Language Models [74.07684768317705]
LMs are highly sensitive to markers of certainty in prompts, with accuies varying more than 80%.
We find that expressions of high certainty result in a decrease in accuracy as compared to low expressions; similarly, factive verbs hurt performance, while evidentials benefit performance.
These associations may suggest that LMs is based on observed language use, rather than truly reflecting uncertainty.
arXiv Detail & Related papers (2023-02-26T23:46:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.