Quantum computing and persistence in topological data analysis
- URL: http://arxiv.org/abs/2410.21258v1
- Date: Mon, 28 Oct 2024 17:54:43 GMT
- Title: Quantum computing and persistence in topological data analysis
- Authors: Casper Gyurik, Alexander Schmidhuber, Robbie King, Vedran Dunjko, Ryu Hayakawa,
- Abstract summary: Topological data analysis (TDA) aims to extract noise-robust features from a data set by examining the number and persistence of holes in its topology.
We show that a computational problem closely related to a core task in TDA is $mathsfBQP_1$-hard and contained in $mathsfBQP$.
Our approach relies on encoding the persistence of a hole in a variant of the guided sparse Hamiltonian problem, where the guiding state is constructed from a harmonic representative of the hole.
- Score: 41.16650228588075
- License:
- Abstract: Topological data analysis (TDA) aims to extract noise-robust features from a data set by examining the number and persistence of holes in its topology. We show that a computational problem closely related to a core task in TDA -- determining whether a given hole persists across different length scales -- is $\mathsf{BQP}_1$-hard and contained in $\mathsf{BQP}$. This result implies an exponential quantum speedup for this problem under standard complexity-theoretic assumptions. Our approach relies on encoding the persistence of a hole in a variant of the guided sparse Hamiltonian problem, where the guiding state is constructed from a harmonic representative of the hole.
Related papers
- Quantum topological data analysis via the estimation of the density of
states [17.857341127079305]
We develop a quantum topological data analysis protocol based on the estimation of the density of states (DOS) of the Laplacian.
We test our protocol on noiseless and noisy quantum simulators and run examples on IBM quantum processors.
arXiv Detail & Related papers (2023-12-12T09:43:04Z) - A Lie Algebraic Theory of Barren Plateaus for Deep Parameterized Quantum Circuits [37.84307089310829]
Variational quantum computing schemes train a loss function by sending an initial state through a parametrized quantum circuit.
Despite their promise, the trainability of these algorithms is hindered by barren plateaus.
We present a general Lie algebra that provides an exact expression for the variance of the loss function of sufficiently deep parametrized quantum circuits.
arXiv Detail & Related papers (2023-09-17T18:14:10Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
Topological data analysis (TDA) has emerged as a powerful tool for extracting meaningful insights from complex data.
We propose a quantum approach to defining Betti kernels, which is based on constructing Betti curves with increasing order.
arXiv Detail & Related papers (2023-07-14T14:48:52Z) - Complexity-Theoretic Limitations on Quantum Algorithms for Topological
Data Analysis [59.545114016224254]
Quantum algorithms for topological data analysis seem to provide an exponential advantage over the best classical approach.
We show that the central task of TDA -- estimating Betti numbers -- is intractable even for quantum computers.
We argue that an exponential quantum advantage can be recovered if the input data is given as a specification of simplices.
arXiv Detail & Related papers (2022-09-28T17:53:25Z) - Quantum Algorithms for Data Representation and Analysis [68.754953879193]
We provide quantum procedures that speed-up the solution of eigenproblems for data representation in machine learning.
The power and practical use of these subroutines is shown through new quantum algorithms, sublinear in the input matrix's size, for principal component analysis, correspondence analysis, and latent semantic analysis.
Results show that the run-time parameters that do not depend on the input's size are reasonable and that the error on the computed model is small, allowing for competitive classification performances.
arXiv Detail & Related papers (2021-04-19T00:41:43Z) - The Heavy-Tail Phenomenon in SGD [7.366405857677226]
We show that depending on the structure of the Hessian of the loss at the minimum, the SGD iterates will converge to a emphheavy-tailed stationary distribution.
We translate our results into insights about the behavior of SGD in deep learning.
arXiv Detail & Related papers (2020-06-08T16:43:56Z) - Geometric distinguishability measures limit quantum channel estimation
and discrimination [6.345523830122166]
We show that a chain-rule property holds for the right logarithmic derivative Fisher information and the geometric R'enyi relative entropy.
In channel estimation, these results imply a condition for the unattainability of Heisenberg scaling.
More generally, we introduce the amortized quantum Fisher information as a conceptual framework for analyzing general sequential protocols.
arXiv Detail & Related papers (2020-04-22T17:11:34Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
We consider the bipartite graph and formalize its representation learning problem as a statistical estimation problem of parameters in a semiparametric exponential family distribution.
We show that the proposed objective is strongly convex in a neighborhood around the ground truth, so that a gradient descent-based method achieves linear convergence rate.
Our estimator is robust to any model misspecification within the exponential family, which is validated in extensive experiments.
arXiv Detail & Related papers (2020-03-02T16:40:36Z) - On estimating the entropy of shallow circuit outputs [49.1574468325115]
Estimating the entropy of probability distributions and quantum states is a fundamental task in information processing.
We show that entropy estimation for distributions or states produced by either log-depth circuits or constant-depth circuits with gates of bounded fan-in and unbounded fan-out is at least as hard as the Learning with Errors problem.
arXiv Detail & Related papers (2020-02-27T15:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.