OmniSep: Unified Omni-Modality Sound Separation with Query-Mixup
- URL: http://arxiv.org/abs/2410.21269v1
- Date: Mon, 28 Oct 2024 17:58:15 GMT
- Title: OmniSep: Unified Omni-Modality Sound Separation with Query-Mixup
- Authors: Xize Cheng, Siqi Zheng, Zehan Wang, Minghui Fang, Ziang Zhang, Rongjie Huang, Ziyang Ma, Shengpeng Ji, Jialong Zuo, Tao Jin, Zhou Zhao,
- Abstract summary: We introduce Omni-modal Sound Separation (OmniSep), a novel framework capable of isolating clean soundtracks based on omni-modal queries.
We introduce the Query-Mixup strategy, which blends query features from different modalities during training.
We further enhance this flexibility by allowing queries to influence sound separation positively or negatively, facilitating the retention or removal of specific sounds.
- Score: 50.70494796172493
- License:
- Abstract: The scaling up has brought tremendous success in the fields of vision and language in recent years. When it comes to audio, however, researchers encounter a major challenge in scaling up the training data, as most natural audio contains diverse interfering signals. To address this limitation, we introduce Omni-modal Sound Separation (OmniSep), a novel framework capable of isolating clean soundtracks based on omni-modal queries, encompassing both single-modal and multi-modal composed queries. Specifically, we introduce the Query-Mixup strategy, which blends query features from different modalities during training. This enables OmniSep to optimize multiple modalities concurrently, effectively bringing all modalities under a unified framework for sound separation. We further enhance this flexibility by allowing queries to influence sound separation positively or negatively, facilitating the retention or removal of specific sounds as desired. Finally, OmniSep employs a retrieval-augmented approach known as Query-Aug, which enables open-vocabulary sound separation. Experimental evaluations on MUSIC, VGGSOUND-CLEAN+, and MUSIC-CLEAN+ datasets demonstrate effectiveness of OmniSep, achieving state-of-the-art performance in text-, image-, and audio-queried sound separation tasks. For samples and further information, please visit the demo page at \url{https://omnisep.github.io/}.
Related papers
- Beyond Single-Audio: Advancing Multi-Audio Processing in Audio Large Language Models [56.776580717999806]
Real-world applications often involve processing multiple audio streams simultaneously.
We propose the first multi-audio evaluation benchmark that consists of 20 datasets from 11 multi-audio tasks.
We propose a novel multi-audio-LLM (MALLM) to capture audio context among multiple similar audios.
arXiv Detail & Related papers (2024-09-27T12:06:53Z) - Semantic Grouping Network for Audio Source Separation [41.54814517077309]
We present a novel Semantic Grouping Network, termed as SGN, that can directly disentangle sound representations and extract high-level semantic information for each source from input audio mixture.
We conducted extensive experiments on music-only and universal sound separation benchmarks: MUSIC, FUSS, MUSDB18, and VGG-Sound.
arXiv Detail & Related papers (2024-07-04T08:37:47Z) - Qwen-Audio: Advancing Universal Audio Understanding via Unified
Large-Scale Audio-Language Models [98.34889301515412]
We develop the Qwen-Audio model and address the limitation by scaling up audio-language pre-training to cover over 30 tasks and various audio types.
Qwen-Audio achieves impressive performance across diverse benchmark tasks without requiring any task-specific fine-tuning.
We further develop Qwen-Audio-Chat, which allows for input from various audios and text inputs, enabling multi-turn dialogues and supporting various audio-central scenarios.
arXiv Detail & Related papers (2023-11-14T05:34:50Z) - AudioChatLlama: Towards General-Purpose Speech Abilities for LLMs [27.122094554340194]
We extend the instruction-tuned Llama-2 model with end-to-end general-purpose speech processing and reasoning abilities.
The resulting end-to-end model, named AudioChatLlama, can utilize audio prompts as a replacement for text and sustain a conversation.
arXiv Detail & Related papers (2023-11-12T06:56:14Z) - QDFormer: Towards Robust Audiovisual Segmentation in Complex Environments with Quantization-based Semantic Decomposition [47.103732403296654]
Multi-source semantic space can be represented as the Cartesian product of single-source sub-spaces.
We introduce a global-to-local quantization mechanism, which distills knowledge from stable global (clip-level) features into local (frame-level) ones.
Experiments demonstrate that our semantically decomposed audio representation significantly improves AVS performance.
arXiv Detail & Related papers (2023-09-29T20:48:44Z) - Separate Anything You Describe [55.0784713558149]
Language-queried audio source separation (LASS) is a new paradigm for computational auditory scene analysis (CASA)
AudioSep is a foundation model for open-domain audio source separation with natural language queries.
arXiv Detail & Related papers (2023-08-09T16:09:44Z) - ONE-PEACE: Exploring One General Representation Model Toward Unlimited
Modalities [71.15303690248021]
We release ONE-PEACE, a highly model with 4B parameters that can seamlessly align and integrate representations across vision, audio, and language modalities.
The architecture of ONE-PEACE comprises modality adapters, shared self-attention layers, and modality FFNs.
With the scaling-friendly architecture and pretraining tasks, ONE-PEACE has the potential to expand to unlimited modalities.
arXiv Detail & Related papers (2023-05-18T17:59:06Z) - Learning music audio representations via weak language supervision [14.335950077921435]
We design a multimodal architecture for music and language pre-training (MuLaP) optimised via a set of proxy tasks.
weak supervision is provided in the form of noisy natural language descriptions conveying the overall musical content of the track.
We demonstrate the usefulness of our approach by comparing the performance of audio representations produced by the same audio backbone with different training strategies.
arXiv Detail & Related papers (2021-12-08T10:30:52Z) - Audio-Oriented Multimodal Machine Comprehension: Task, Dataset and Model [51.42415340921237]
We propose a Dynamic Inter- and Intra-modality Attention (DIIA) model to fuse the two modalities (audio and textual)
We further develop a Multimodal Knowledge Distillation (MKD) module to enable our multimodal MC model to accurately predict the answers based only on either the text or the audio.
arXiv Detail & Related papers (2021-07-04T08:35:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.