EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation
- URL: http://arxiv.org/abs/2410.21271v2
- Date: Thu, 21 Nov 2024 16:12:34 GMT
- Title: EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation
- Authors: Shih-Yang Liu, Huck Yang, Chien-Yi Wang, Nai Chit Fung, Hongxu Yin, Charbel Sakr, Saurav Muralidharan, Kwang-Ting Cheng, Jan Kautz, Yu-Chiang Frank Wang, Pavlo Molchanov, Min-Hung Chen,
- Abstract summary: EoRA consistently outperforms previous methods in compensating errors for compressed LLaMA2/3 models on various tasks.
EoRA offers a scalable, training-free solution to compensate for compression errors.
- Score: 79.56709262189953
- License:
- Abstract: In this work, we re-formulate the model compression problem into the customized compensation problem: Given a compressed model, we aim to introduce residual low-rank paths to compensate for compression errors under customized requirements from users (e.g., tasks, compression ratios), resulting in greater flexibility in adjusting overall capacity without being constrained by specific compression formats. However, naively applying SVD to derive residual paths causes suboptimal utilization of the low-rank representation capacity. Instead, we propose Training-free Eigenspace Low-Rank Approximation (EoRA), a method that directly minimizes compression-induced errors without requiring gradient-based training, achieving fast optimization in minutes using a small amount of calibration data. EoRA projects compression errors into the eigenspace of input activations, leveraging eigenvalues to effectively prioritize the reconstruction of high-importance error components. Moreover, EoRA can be seamlessly integrated with fine-tuning and quantization to further improve effectiveness and efficiency. EoRA consistently outperforms previous methods in compensating errors for compressed LLaMA2/3 models on various tasks, such as language generation, commonsense reasoning, and math reasoning tasks (e.g., 31.31%/12.88% and 9.69% improvements on ARC-Easy/ARC-Challenge and MathQA when compensating LLaMA3-8B that is quantized to 4-bit and pruned to 2:4 sparsity). EoRA offers a scalable, training-free solution to compensate for compression errors, making it a powerful tool to deploy LLMs in various capacity and efficiency requirements.
Related papers
- SpaLLM: Unified Compressive Adaptation of Large Language Models with Sketching [32.4599581528901]
"Two-tower" architecture is used for compressing pre-trained LLM parameters into compact representations and fine-tuning the additive full-precision adapter.
We propose SpaLLM (Sketched Adapting of LLMs), a novel compressive adaptation approach for LLMs.
We show that SpaLLM sketches pre-trained LLM weights into lookup tables and directly fine-tunes the values in these tables.
arXiv Detail & Related papers (2024-10-08T20:58:24Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
Key-Value ( KV) cache is crucial component in serving transformer-based autoregressive large language models (LLMs)
Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages; (2) KV cache compression at test time; and (3) KV cache compression at test time.
We propose a low-rank approximation of KV weight matrices, allowing plug-in integration with existing transformer-based LLMs without model retraining.
Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages.
arXiv Detail & Related papers (2024-10-04T03:10:53Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - Accelerating Communication in Deep Learning Recommendation Model Training with Dual-Level Adaptive Lossy Compression [10.233937665979694]
DLRM is a state-of-the-art recommendation system model that has gained widespread adoption across various industry applications.
A significant bottleneck in this process is the time-consuming all-to-all communication required to collect embedding data from all devices.
We introduce a method that employs error-bounded lossy compression to reduce the communication data size and accelerate DLRM training.
arXiv Detail & Related papers (2024-07-05T05:55:18Z) - Differential error feedback for communication-efficient decentralized learning [48.924131251745266]
We propose a new decentralized communication-efficient learning approach that blends differential quantization with error feedback.
We show that the resulting communication-efficient strategy is stable both in terms of mean-square error and average bit rate.
The results establish that, in the small step-size regime and with a finite number of bits, it is possible to attain the performance achievable in the absence of compression.
arXiv Detail & Related papers (2024-06-26T15:11:26Z) - ALPS: Improved Optimization for Highly Sparse One-Shot Pruning for Large Language Models [14.310720048047136]
ALPS is an optimization-based framework that tackles the pruning problem using the operator splitting technique and a preconditioned gradient conjugate-based post-processing step.
Our approach incorporates novel techniques to accelerate and theoretically guarantee convergence while leveraging vectorization and GPU parallelism for efficiency.
On the OPT-30B model with 70% sparsity, ALPS achieves a 13% reduction in test perplexity on the WikiText dataset and a 19% improvement in zero-shot benchmark performance compared to existing methods.
arXiv Detail & Related papers (2024-06-12T02:57:41Z) - PYRA: Parallel Yielding Re-Activation for Training-Inference Efficient Task Adaptation [61.57833648734164]
We propose a novel Parallel Yielding Re-Activation (PYRA) method for training-inference efficient task adaptation.
PYRA outperforms all competing methods under both low compression rate and high compression rate.
arXiv Detail & Related papers (2024-03-14T09:06:49Z) - Communication-Efficient Distributed Learning with Local Immediate Error
Compensation [95.6828475028581]
We propose the Local Immediate Error Compensated SGD (LIEC-SGD) optimization algorithm.
LIEC-SGD is superior to previous works in either the convergence rate or the communication cost.
arXiv Detail & Related papers (2024-02-19T05:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.