Heterogeneous Interaction Modeling With Reduced Accumulated Error for Multi-Agent Trajectory Prediction
- URL: http://arxiv.org/abs/2410.21342v1
- Date: Mon, 28 Oct 2024 04:53:42 GMT
- Title: Heterogeneous Interaction Modeling With Reduced Accumulated Error for Multi-Agent Trajectory Prediction
- Authors: Siyuan Chen, Jiahai Wang,
- Abstract summary: This paper proposes heterogeneous interaction modeling with reduced accumulated error for trajectory prediction.
Based on the historical trajectories, our method infers the dynamic interaction graphs among agents.
A heterogeneous attention mechanism is defined on the interaction graphs for aggregating the influence from heterogeneous neighbors to the target agent.
- Score: 25.723504433042923
- License:
- Abstract: Dynamical complex systems composed of interactive heterogeneous agents are prevalent in the world, including urban traffic systems and social networks. Modeling the interactions among agents is the key to understanding and predicting the dynamics of the complex system, e.g., predicting the trajectories of traffic participants in the city. Compared with interaction modeling in homogeneous systems such as pedestrians in a crowded scene, heterogeneous interaction modeling is less explored. Worse still, the error accumulation problem becomes more severe since the interactions are more complex. To tackle the two problems, this paper proposes heterogeneous interaction modeling with reduced accumulated error for multi-agent trajectory prediction. Based on the historical trajectories, our method infers the dynamic interaction graphs among agents, featured by directed interacting relations and interacting effects. A heterogeneous attention mechanism is defined on the interaction graphs for aggregating the influence from heterogeneous neighbors to the target agent. To alleviate the error accumulation problem, this paper analyzes the error sources from the spatial and temporal perspectives, and proposes to introduce the graph entropy and the mixup training strategy for reducing the two types of errors respectively. Our method is examined on three real-world datasets containing heterogeneous agents, and the experimental results validate the superiority of our method.
Related papers
- Neural Interaction Energy for Multi-Agent Trajectory Prediction [55.098754835213995]
We introduce a framework called Multi-Agent Trajectory prediction via neural interaction Energy (MATE)
MATE assesses the interactive motion of agents by employing neural interaction energy.
To bolster temporal stability, we introduce two constraints: inter-agent interaction constraint and intra-agent motion constraint.
arXiv Detail & Related papers (2024-04-25T12:47:47Z) - Causal Graph ODE: Continuous Treatment Effect Modeling in Multi-agent
Dynamical Systems [70.84976977950075]
Real-world multi-agent systems are often dynamic and continuous, where the agents co-evolve and undergo changes in their trajectories and interactions over time.
We propose a novel model that captures the continuous interaction among agents using a Graph Neural Network (GNN) as the ODE function.
The key innovation of our model is to learn time-dependent representations of treatments and incorporate them into the ODE function, enabling precise predictions of potential outcomes.
arXiv Detail & Related papers (2024-02-29T23:07:07Z) - Collective Relational Inference for learning heterogeneous interactions [8.215734914005845]
We propose a novel probabilistic method for relational inference, which possesses two distinctive characteristics compared to existing methods.
We evaluate the proposed methodology across several benchmark datasets and demonstrate that it outperforms existing methods in accurately inferring interaction types.
Overall the proposed model is data-efficient and generalizable to large systems when trained on smaller ones.
arXiv Detail & Related papers (2023-04-30T19:45:04Z) - InterGen: Diffusion-based Multi-human Motion Generation under Complex Interactions [49.097973114627344]
We present InterGen, an effective diffusion-based approach that incorporates human-to-human interactions into the motion diffusion process.
We first contribute a multimodal dataset, named InterHuman. It consists of about 107M frames for diverse two-person interactions, with accurate skeletal motions and 23,337 natural language descriptions.
We propose a novel representation for motion input in our interaction diffusion model, which explicitly formulates the global relations between the two performers in the world frame.
arXiv Detail & Related papers (2023-04-12T08:12:29Z) - Random Feature Models for Learning Interacting Dynamical Systems [2.563639452716634]
We consider the problem of constructing a data-based approximation of the interacting forces directly from noisy observations of the paths of the agents in time.
The learned interaction kernels are then used to predict the agents behavior over a longer time interval.
In addition, imposing sparsity reduces the kernel evaluation cost which significantly lowers the simulation cost for forecasting the multi-agent systems.
arXiv Detail & Related papers (2022-12-11T20:09:36Z) - Learning Heterogeneous Interaction Strengths by Trajectory Prediction
with Graph Neural Network [0.0]
We propose the attentive relational inference network (RAIN) to infer continuously weighted interaction graphs without any ground-truth interaction strengths.
We show that our RAIN model with the PA mechanism accurately infers continuous interaction strengths for simulated physical systems in an unsupervised manner.
arXiv Detail & Related papers (2022-08-28T09:13:33Z) - Learning Interaction Variables and Kernels from Observations of
Agent-Based Systems [14.240266845551488]
We propose a learning technique that, given observations of states and velocities along trajectories of agents, yields both the variables upon which the interaction kernel depends and the interaction kernel itself.
This yields an effective dimension reduction which avoids the curse of dimensionality from the high-dimensional observation data.
We demonstrate the learning capability of our method to a variety of first-order interacting systems.
arXiv Detail & Related papers (2022-08-04T16:31:01Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Unlimited Neighborhood Interaction for Heterogeneous Trajectory
Prediction [97.40338982628094]
We propose a simple yet effective Unlimited Neighborhood Interaction Network (UNIN) which predicts trajectories of heterogeneous agents in multiply categories.
Specifically, the proposed unlimited neighborhood interaction module generates the fused-features of all agents involved in an interaction simultaneously.
A hierarchical graph attention module is proposed to obtain category-tocategory interaction and agent-to-agent interaction.
arXiv Detail & Related papers (2021-07-31T13:36:04Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.