Minimum Entropy Coupling with Bottleneck
- URL: http://arxiv.org/abs/2410.21666v1
- Date: Tue, 29 Oct 2024 02:19:07 GMT
- Title: Minimum Entropy Coupling with Bottleneck
- Authors: M. Reza Ebrahimi, Jun Chen, Ashish Khisti,
- Abstract summary: This paper investigates a novel lossy compression framework operating under logarithmic loss.
It is especially relevant for applications that require joint compression and retrieval, and in scenarios involving distributional shifts due to processing.
We show that the proposed formulation extends the classical minimum entropy coupling framework by integrating a bottleneck.
- Score: 22.409716686394525
- License:
- Abstract: This paper investigates a novel lossy compression framework operating under logarithmic loss, designed to handle situations where the reconstruction distribution diverges from the source distribution. This framework is especially relevant for applications that require joint compression and retrieval, and in scenarios involving distributional shifts due to processing. We show that the proposed formulation extends the classical minimum entropy coupling framework by integrating a bottleneck, allowing for a controlled degree of stochasticity in the coupling. We explore the decomposition of the Minimum Entropy Coupling with Bottleneck (MEC-B) into two distinct optimization problems: Entropy-Bounded Information Maximization (EBIM) for the encoder, and Minimum Entropy Coupling (MEC) for the decoder. Through extensive analysis, we provide a greedy algorithm for EBIM with guaranteed performance, and characterize the optimal solution near functional mappings, yielding significant theoretical insights into the structural complexity of this problem. Furthermore, we illustrate the practical application of MEC-B through experiments in Markov Coding Games (MCGs) under rate limits. These games simulate a communication scenario within a Markov Decision Process, where an agent must transmit a compressed message from a sender to a receiver through its actions. Our experiments highlight the trade-offs between MDP rewards and receiver accuracy across various compression rates, showcasing the efficacy of our method compared to conventional compression baseline.
Related papers
- Downlink MIMO Channel Estimation from Bits: Recoverability and Algorithm [47.7091447096969]
A major challenge lies in acquiring the downlink channel state information (CSI) at the base station (BS) from limited feedback sent by the user equipment (UE)
In this paper, a simple feedback framework is proposed, where a compression and Gaussian dithering-based quantization strategy is adopted at the UE side, and then a maximum likelihood estimator (MLE) is formulated at the BS side.
The algorithm is carefully designed to integrate a sophisticated harmonic retrieval (HR) solver as subroutine, which turns out to be the key of effectively tackling this hard MLE problem.
arXiv Detail & Related papers (2024-11-25T02:15:01Z) - Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints [10.564071872770146]
We study the computation of the rate-distortion-perception function (RDPF) for discrete memoryless sources.
We characterize the optimal parametric solutions.
We provide sufficient conditions on the distortion and the perception constraints.
arXiv Detail & Related papers (2024-08-27T12:50:12Z) - Differential error feedback for communication-efficient decentralized learning [48.924131251745266]
We propose a new decentralized communication-efficient learning approach that blends differential quantization with error feedback.
We show that the resulting communication-efficient strategy is stable both in terms of mean-square error and average bit rate.
The results establish that, in the small step-size regime and with a finite number of bits, it is possible to attain the performance achievable in the absence of compression.
arXiv Detail & Related papers (2024-06-26T15:11:26Z) - Towards Faster Decentralized Stochastic Optimization with Communication Compression [27.484212303346816]
We introduce MoTEF, a novel approach that integrates communication with Momentum Tracking and Error Feedback.
Our analysis demonstrates that MoTEF integrates most of the desired properties, and significantly existing methods under data.
arXiv Detail & Related papers (2024-05-30T14:51:57Z) - Computing Low-Entropy Couplings for Large-Support Distributions [53.00113867130712]
Minimum-entropy coupling has applications in areas such as causality and steganography.
Existing algorithms are either computationally intractable for large-support distributions or limited to specific distribution types.
This work addresses these limitations by unifying a prior family of iterative MEC approaches into a generalized partition-based formalism.
arXiv Detail & Related papers (2024-05-29T21:54:51Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
We derive the performance achievable by a network of distributed agents that solve, adaptively and in the presence of communication constraints, a regression problem.
We devise an optimized allocation strategy where the parameters necessary for the optimization can be learned online by the agents.
arXiv Detail & Related papers (2023-04-07T13:41:08Z) - Communication-Efficient Federated Learning via Quantized Compressed
Sensing [82.10695943017907]
The presented framework consists of gradient compression for wireless devices and gradient reconstruction for a parameter server.
Thanks to gradient sparsification and quantization, our strategy can achieve a higher compression ratio than one-bit gradient compression.
We demonstrate that the framework achieves almost identical performance with the case that performs no compression.
arXiv Detail & Related papers (2021-11-30T02:13:54Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Task-Based Information Compression for Multi-Agent Communication
Problems with Channel Rate Constraints [28.727611928919725]
We introduce the state-aggregation for information compression algorithm (SAIC) to solve the formulated TBIC problem.
It is shown that SAIC is able to achieve near-optimal performance in terms of the achieved sum of discounted rewards.
arXiv Detail & Related papers (2020-05-28T18:29:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.