Entanglement-enhanced AC magnetometry in the presence of Markovian noises
- URL: http://arxiv.org/abs/2410.21699v1
- Date: Tue, 29 Oct 2024 03:28:37 GMT
- Title: Entanglement-enhanced AC magnetometry in the presence of Markovian noises
- Authors: Thanaporn Sichanugrist, Hajime Fukuda, Takeo Moroi, Kazunori Nakayama, So Chigusa, Norikazu Mizuochi, Masashi Hazumi, Yuichiro Matsuzaki,
- Abstract summary: Entanglement is a resource to improve the sensitivity of quantum sensors.
We show an advantage to using an entanglement over the classical strategy to detect AC magnetic fields.
- Score: 0.0
- License:
- Abstract: Entanglement is a resource to improve the sensitivity of quantum sensors. In an ideal case, using an entangled state as a probe to detect target fields, we can beat the standard quantum limit by which all classical sensors are bounded. However, since entanglement is fragile against decoherence, it is unclear whether entanglement-enhanced metrology is useful in a noisy environment. Its benefit is indeed limited when estimating the amplitude of DC magnetic fields under the effect of parallel Markovian decoherence, where the noise operator is parallel to the target field. In this paper, on the contrary, we show an advantage to using an entanglement over the classical strategy under the effect of parallel Markovian decoherence when we try to detect AC magnetic fields. We consider a scenario to induce a Rabi oscillation of the qubits with the target AC magnetic fields. Although we can, in principle, estimate the amplitude of the AC magnetic fields from the Rabi oscillation, the signal becomes weak if the qubit frequency is significantly detuned from the frequency of the AC magnetic field. We show that, by using the GHZ states, we can significantly enhance the signal of the detuned Rabi oscillation even under the effect of parallel Markovian decoherence. Our method is based on the fact that the interaction time between the GHZ states and AC magnetic fields scales as $1/L$ to mitigate the decoherence effect where $L$ is the number of qubits, which contributes to improving the bandwidth of the detectable frequencies of the AC magnetic fields. Our results open up the way for new applications of entanglement-enhanced AC magnetometry.
Related papers
- Magnetic Field Detection Using a Two-Qubit System Under Noisy Heisenberg Interaction [2.7855886538423182]
We propose a method to design a magnetic field detector using a noisy two-qubit system.
We find that the magnetic field does not significantly influence the decoherence process, but it introduces a distinct oscillation in the return probability over time.
These results point towards the feasibility of realizing a practical quantum-based magnetic field detector.
arXiv Detail & Related papers (2024-10-30T06:13:15Z) - Universal and robust dynamic decoupling controls for zero-field magnetometry by using molecular clock sensors [0.0]
Color centers in diamond and silicon carbide (SiC) and molecular spins through a host matrix control are promising for nanoscale quantum sensing.
However, large transverse zero-field splitting (ZFS) is often inevitable due to their intrinsic symmetry and/or the high local strains of the host matrix.
We address this challenge by employing a combination of radio-frequency (RF) field driving along the orientation and microwave (MW) dynamic pulse sequences.
arXiv Detail & Related papers (2024-10-02T12:33:14Z) - Generalized Gouy Rotation of Electron Vortex beams in uniform magnetic fields [54.010858975226945]
We study the dynamics of EVBs in magnetic fields using exact solutions of the relativistic paraxial equation in magnetic fields.
We provide a unified description of different regimes under generalized Gouy rotation, linking the Gouy phase to EVB rotation angles.
This work offers new insights into the dynamics of EVBs in magnetic fields and suggests practical applications in beam manipulation and beam optics of vortex particles.
arXiv Detail & Related papers (2024-07-03T03:29:56Z) - Frequency limits of sequential readout for sensing AC magnetic fields
using nitrogen-vacancy centers in diamond [0.0]
We study the sensitivity of ac magnetic field as a function of frequency using sequential readout method.
At the near-optimal frequency of 1 MHz, we reached a maximum sensitivity of 229 pT/$sqrtmathrmHz$ by employing the XY4-(4) DD sequence.
arXiv Detail & Related papers (2023-08-21T03:17:38Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Vector DC magnetic-field sensing with reference microwave field using
perfectly aligned nitrogen-vacancy centers in diamond [0.0]
We propose a method to measure vector DC magnetic fields using perfectly aligned NV centers without reference DC magnetic fields.
Our method of using a reference microwave field is a novel technique for sensitive vector DC magnetic-field sensing.
arXiv Detail & Related papers (2021-12-01T14:05:10Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Nuclear Spin Assisted Magnetic Field Angle Sensing [0.0]
Quantum sensing exploits the strong sensitivity of quantum systems to measure small external signals.
The nitrogen-vacancy center in diamond is one of the most promising platforms for real-world quantum sensing applications.
arXiv Detail & Related papers (2020-10-08T18:24:16Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.