Minimax optimality of deep neural networks on dependent data via PAC-Bayes bounds
- URL: http://arxiv.org/abs/2410.21702v1
- Date: Tue, 29 Oct 2024 03:37:02 GMT
- Title: Minimax optimality of deep neural networks on dependent data via PAC-Bayes bounds
- Authors: Pierre Alquier, William Kengne,
- Abstract summary: Schmidt-Hieber ( 2020) proved the minimax optimality of deep neural networks with ReLu activation for least-square regression estimation.
We study a more general class of machine learning problems, which includes least-square and logistic regression.
We establish a similar lower bound for classification with the logistic loss, and prove that the proposed DNN estimator is optimal in the minimax sense.
- Score: 3.9041951045689305
- License:
- Abstract: In a groundbreaking work, Schmidt-Hieber (2020) proved the minimax optimality of deep neural networks with ReLu activation for least-square regression estimation over a large class of functions defined by composition. In this paper, we extend these results in many directions. First, we remove the i.i.d. assumption on the observations, to allow some time dependence. The observations are assumed to be a Markov chain with a non-null pseudo-spectral gap. Then, we study a more general class of machine learning problems, which includes least-square and logistic regression as special cases. Leveraging on PAC-Bayes oracle inequalities and a version of Bernstein inequality due to Paulin (2015), we derive upper bounds on the estimation risk for a generalized Bayesian estimator. In the case of least-square regression, this bound matches (up to a logarithmic factor) the lower bound of Schmidt-Hieber (2020). We establish a similar lower bound for classification with the logistic loss, and prove that the proposed DNN estimator is optimal in the minimax sense.
Related papers
- Deep learning from strongly mixing observations: Sparse-penalized regularization and minimax optimality [0.0]
We consider sparse-penalized regularization for deep neural network predictor.
We deal with the squared and a broad class of loss functions.
arXiv Detail & Related papers (2024-06-12T15:21:51Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - A PAC-Bayes oracle inequality for sparse neural networks [0.0]
We study the Gibbs posterior distribution for sparse deep neural nets in a nonparametric regression setting.
We prove an oracle inequality which shows that the method adapts to the unknown regularity and hierarchical structure of the regression function.
arXiv Detail & Related papers (2022-04-26T15:48:24Z) - Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium
Learning from Offline Datasets [101.5329678997916]
We study episodic two-player zero-sum Markov games (MGs) in the offline setting.
The goal is to find an approximate Nash equilibrium (NE) policy pair based on a dataset collected a priori.
arXiv Detail & Related papers (2022-02-15T15:39:30Z) - Optimal Estimation and Computational Limit of Low-rank Gaussian Mixtures [12.868722327487752]
We propose a low-rank Gaussian mixture model (LrMM) assuming each matrix-valued observation has a planted low-rank structure.
We prove the minimax optimality of a maximum likelihood estimator which, in general, is computationally infeasible.
Our results reveal multiple phase transitions in the minimax error rates and the statistical-to-computational gap.
arXiv Detail & Related papers (2022-01-22T12:43:25Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - Binary Classification of Gaussian Mixtures: Abundance of Support
Vectors, Benign Overfitting and Regularization [39.35822033674126]
We study binary linear classification under a generative Gaussian mixture model.
We derive novel non-asymptotic bounds on the classification error of the latter.
Our results extend to a noisy model with constant probability noise flips.
arXiv Detail & Related papers (2020-11-18T07:59:55Z) - Learning Minimax Estimators via Online Learning [55.92459567732491]
We consider the problem of designing minimax estimators for estimating parameters of a probability distribution.
We construct an algorithm for finding a mixed-case Nash equilibrium.
arXiv Detail & Related papers (2020-06-19T22:49:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.