Bayesian Optimization for Hyperparameters Tuning in Neural Networks
- URL: http://arxiv.org/abs/2410.21886v1
- Date: Tue, 29 Oct 2024 09:23:24 GMT
- Title: Bayesian Optimization for Hyperparameters Tuning in Neural Networks
- Authors: Gabriele Onorato,
- Abstract summary: Bayesian Optimization is a derivative-free global optimization method suitable for black-box functions with continuous inputs and limited evaluation budgets.
This study investigates the application of BO for the hyper parameter tuning of neural networks, specifically targeting the enhancement of Convolutional Neural Networks (CNN)
Experimental outcomes reveal that BO effectively balances exploration and exploitation, converging rapidly towards optimal settings for CNN architectures.
This approach underlines the potential of BO in automating neural network tuning, contributing to improved accuracy and computational efficiency in machine learning pipelines.
- Score: 0.0
- License:
- Abstract: This study investigates the application of Bayesian Optimization (BO) for the hyperparameter tuning of neural networks, specifically targeting the enhancement of Convolutional Neural Networks (CNN) for image classification tasks. Bayesian Optimization is a derivative-free global optimization method suitable for expensive black-box functions with continuous inputs and limited evaluation budgets. The BO algorithm leverages Gaussian Process regression and acquisition functions like Upper Confidence Bound (UCB) and Expected Improvement (EI) to identify optimal configurations effectively. Using the Ax and BOTorch frameworks, this work demonstrates the efficiency of BO in reducing the number of hyperparameter tuning trials while achieving competitive model performance. Experimental outcomes reveal that BO effectively balances exploration and exploitation, converging rapidly towards optimal settings for CNN architectures. This approach underlines the potential of BO in automating neural network tuning, contributing to improved accuracy and computational efficiency in machine learning pipelines.
Related papers
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
We show that vanilla and constrained BO algorithms are inefficient when optimising invariant objectives.
We derive a bound on the maximum information gain of these invariant kernels.
We use our method to design a current drive system for a nuclear fusion reactor, finding a high-performance solution.
arXiv Detail & Related papers (2024-10-22T12:51:46Z) - Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
We introduce utility, which is a function predefined by each user and describes the trade-off between cost and performance of BO.
We validate our algorithm on various LC datasets and found it outperform all the previous multi-fidelity BO and transfer-BO baselines we consider.
arXiv Detail & Related papers (2024-05-28T07:38:39Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Ensemble-based Hybrid Optimization of Bayesian Neural Networks and
Traditional Machine Learning Algorithms [0.0]
This research introduces a novel methodology for optimizing Bayesian Neural Networks (BNNs) by synergistically integrating them with traditional machine learning algorithms such as Random Forests (RF), Gradient Boosting (GB), and Support Vector Machines (SVM)
Feature integration solidifies these results by emphasizing the second-order conditions for optimality, including stationarity and positive definiteness of the Hessian matrix.
Overall, the ensemble method stands out as a robust, algorithmically optimized approach.
arXiv Detail & Related papers (2023-10-09T06:59:17Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest.
We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO.
arXiv Detail & Related papers (2023-07-25T09:45:47Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Federated Bayesian Optimization via Thompson Sampling [33.087439644066876]
This paper presents federated Thompson sampling (FTS) which overcomes a number of key challenges of FBO and FL in a principled way.
We empirically demonstrate the effectiveness of FTS in terms of communication efficiency, computational efficiency, and practical performance.
arXiv Detail & Related papers (2020-10-20T09:42:17Z) - Additive Tree-Structured Conditional Parameter Spaces in Bayesian
Optimization: A Novel Covariance Function and a Fast Implementation [34.89735938765757]
We generalize the additive assumption to tree-structured functions, showing improved sample-efficiency, wider applicability and greater flexibility.
By incorporating the structure information of parameter spaces and the additive assumption in the BO loop, we develop a parallel algorithm to optimize the acquisition function.
We demonstrate our method on an optimization benchmark function, on pruning pre-trained VGG16 and Res50 models as well as on searching activation functions of ResNet20.
arXiv Detail & Related papers (2020-10-06T16:08:58Z) - Multi-Fidelity Bayesian Optimization via Deep Neural Networks [19.699020509495437]
In many applications, the objective function can be evaluated at multiple fidelities to enable a trade-off between the cost and accuracy.
We propose Deep Neural Network Multi-Fidelity Bayesian Optimization (DNN-MFBO) that can flexibly capture all kinds of complicated relationships between the fidelities.
We show the advantages of our method in both synthetic benchmark datasets and real-world applications in engineering design.
arXiv Detail & Related papers (2020-07-06T23:28:40Z) - BOSH: Bayesian Optimization by Sampling Hierarchically [10.10241176664951]
We propose a novel BO routine pairing a hierarchical Gaussian process with an information-theoretic framework to generate a growing pool of realizations.
We demonstrate that BOSH provides more efficient and higher-precision optimization than standard BO across synthetic benchmarks, simulation optimization, reinforcement learning and hyper- parameter tuning tasks.
arXiv Detail & Related papers (2020-07-02T07:35:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.