Shuffling Gradient-Based Methods for Nonconvex-Concave Minimax Optimization
- URL: http://arxiv.org/abs/2410.22297v1
- Date: Tue, 29 Oct 2024 17:47:22 GMT
- Title: Shuffling Gradient-Based Methods for Nonconvex-Concave Minimax Optimization
- Authors: Quoc Tran-Dinh, Trang H. Tran, Lam M. Nguyen,
- Abstract summary: We develop novel gradient-based methods for tackling non-linear minimax problems.
We show that the new methods achieve comparable results with other methods.
- Score: 20.093236438944718
- License:
- Abstract: This paper aims at developing novel shuffling gradient-based methods for tackling two classes of minimax problems: nonconvex-linear and nonconvex-strongly concave settings. The first algorithm addresses the nonconvex-linear minimax model and achieves the state-of-the-art oracle complexity typically observed in nonconvex optimization. It also employs a new shuffling estimator for the "hyper-gradient", departing from standard shuffling techniques in optimization. The second method consists of two variants: semi-shuffling and full-shuffling schemes. These variants tackle the nonconvex-strongly concave minimax setting. We establish their oracle complexity bounds under standard assumptions, which, to our best knowledge, are the best-known for this specific setting. Numerical examples demonstrate the performance of our algorithms and compare them with two other methods. Our results show that the new methods achieve comparable performance with SGD, supporting the potential of incorporating shuffling strategies into minimax algorithms.
Related papers
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Optimal Guarantees for Algorithmic Reproducibility and Gradient
Complexity in Convex Optimization [55.115992622028685]
Previous work suggests that first-order methods would need to trade-off convergence rate (gradient convergence rate) for better.
We demonstrate that both optimal complexity and near-optimal convergence guarantees can be achieved for smooth convex minimization and smooth convex-concave minimax problems.
arXiv Detail & Related papers (2023-10-26T19:56:52Z) - Near-Optimal Decentralized Momentum Method for Nonconvex-PL Minimax
Problems [39.197569803430646]
Minimax optimization plays an important role in many machine learning tasks such as adversarial networks (GANs) and adversarial training.
Although recently a wide variety of optimization methods have been proposed to solve the minimax problems, most of them ignore the distributed setting.
arXiv Detail & Related papers (2023-04-21T11:38:41Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Conditional Gradient Methods for Convex Optimization with General Affine
and Nonlinear Constraints [8.643249539674612]
This paper presents new conditional gradient methods for solving convex optimization problems with general affine and nonlinear constraints.
We first present a new constraint extrapolated condition gradient (CoexCG) method that can achieve an $cal O (1/epsilon2)$ iteration complexity for both smooth and structured nonsmooth function constrained convex optimization.
We further develop novel variants of CoexCG, namely constraint extrapolated and dual regularized conditional gradient (CoexDurCG) methods, that can achieve similar iteration complexity to CoexCG but allow adaptive selection for algorithmic parameters.
arXiv Detail & Related papers (2020-06-30T23:49:38Z) - Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax
Problems [26.24895953952318]
We develop an algorithm to solve a class of non-gence minimax problems.
They can also work with both single or two mini-batch derivatives.
arXiv Detail & Related papers (2020-06-27T03:05:18Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
In this paper, we denote the non-strongly setting on the magnitude of a gradient-free minimax optimization problem.
We show that a novel zeroth-order variance reduced descent algorithm achieves the best known query complexity.
arXiv Detail & Related papers (2020-06-16T17:55:46Z) - Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved
Complexities [21.13934071954103]
We present a deterministic algorithm for non-in one-text variable Descent strongly-concave in the other.
We show that under the SGC assumption, the complexities of the algorithms match that of existing algorithms.
Results are presented in terms of oracle-texttZO-GDMSA and Numerical experiments are presented to support theoretical results.
arXiv Detail & Related papers (2020-01-22T00:05:14Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.