Emotion-Guided Image to Music Generation
- URL: http://arxiv.org/abs/2410.22299v1
- Date: Tue, 29 Oct 2024 17:47:51 GMT
- Title: Emotion-Guided Image to Music Generation
- Authors: Souraja Kundu, Saket Singh, Yuji Iwahori,
- Abstract summary: This paper presents an emotion-guided image-to-music generation framework.
It produces music that aligns with the emotional tone of a given image.
The model employs a CNN-Transformer architecture, featuring pre-trained CNN image feature extractors and three Transformer encoders.
- Score: 0.5461938536945723
- License:
- Abstract: Generating music from images can enhance various applications, including background music for photo slideshows, social media experiences, and video creation. This paper presents an emotion-guided image-to-music generation framework that leverages the Valence-Arousal (VA) emotional space to produce music that aligns with the emotional tone of a given image. Unlike previous models that rely on contrastive learning for emotional consistency, the proposed approach directly integrates a VA loss function to enable accurate emotional alignment. The model employs a CNN-Transformer architecture, featuring pre-trained CNN image feature extractors and three Transformer encoders to capture complex, high-level emotional features from MIDI music. Three Transformer decoders refine these features to generate musically and emotionally consistent MIDI sequences. Experimental results on a newly curated emotionally paired image-MIDI dataset demonstrate the proposed model's superior performance across metrics such as Polyphony Rate, Pitch Entropy, Groove Consistency, and loss convergence.
Related papers
- Video Soundtrack Generation by Aligning Emotions and Temporal Boundaries [1.1743167854433303]
EMSYNC is a video-based symbolic music generation model that aligns music with a video's emotional content and temporal boundaries.
We introduce boundary offsets, a novel temporal conditioning mechanism that enables the model to anticipate and align musical chords with scene cuts.
In subjective listening tests, EMSYNC outperforms state-of-the-art models across all subjective metrics, for music theory-aware participants as well as the general listeners.
arXiv Detail & Related papers (2025-02-14T13:32:59Z) - Audio-Driven Emotional 3D Talking-Head Generation [47.6666060652434]
We present a novel system for synthesizing high-fidelity, audio-driven video portraits with accurate emotional expressions.
We propose a pose sampling method that generates natural idle-state (non-speaking) videos in response to silent audio inputs.
arXiv Detail & Related papers (2024-10-07T08:23:05Z) - Bridging Paintings and Music -- Exploring Emotion based Music Generation through Paintings [10.302353984541497]
This research develops a model capable of generating music that resonates with the emotions depicted in visual arts.
Addressing the scarcity of aligned art and music data, we curated the Emotion Painting Music dataset.
Our dual-stage framework converts images to text descriptions of emotional content and then transforms these descriptions into music, facilitating efficient learning with minimal data.
arXiv Detail & Related papers (2024-09-12T08:19:25Z) - Emotion Manipulation Through Music -- A Deep Learning Interactive Visual Approach [0.0]
We introduce a novel way to manipulate the emotional content of a song using AI tools.
Our goal is to achieve the desired emotion while leaving the original melody as intact as possible.
This research may contribute to on-demand custom music generation, the automated remixing of existing work, and music playlists tuned for emotional progression.
arXiv Detail & Related papers (2024-06-12T20:12:29Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
We are inspired by how musicians compose music not just from a movie script, but also through visualizations.
We propose MeLFusion, a model that can effectively use cues from a textual description and the corresponding image to synthesize music.
Our exhaustive experimental evaluation suggests that adding visual information to the music synthesis pipeline significantly improves the quality of generated music.
arXiv Detail & Related papers (2024-06-07T06:38:59Z) - EmoSpeaker: One-shot Fine-grained Emotion-Controlled Talking Face
Generation [34.5592743467339]
We propose a visual attribute-guided audio decoupler to generate fine-grained facial animations.
To achieve more precise emotional expression, we introduce a fine-grained emotion coefficient prediction module.
Our proposed method, EmoSpeaker, outperforms existing emotional talking face generation methods in terms of expression variation and lip synchronization.
arXiv Detail & Related papers (2024-02-02T14:04:18Z) - PIRenderer: Controllable Portrait Image Generation via Semantic Neural
Rendering [56.762094966235566]
A Portrait Image Neural Renderer is proposed to control the face motions with the parameters of three-dimensional morphable face models.
The proposed model can generate photo-realistic portrait images with accurate movements according to intuitive modifications.
Our model can generate coherent videos with convincing movements from only a single reference image and a driving audio stream.
arXiv Detail & Related papers (2021-09-17T07:24:16Z) - Emotion-Based End-to-End Matching Between Image and Music in
Valence-Arousal Space [80.49156615923106]
Matching images and music with similar emotions might help to make emotion perceptions more vivid and stronger.
Existing emotion-based image and music matching methods either employ limited categorical emotion states or train the matching model using an impractical multi-stage pipeline.
In this paper, we study end-to-end matching between image and music based on emotions in the continuous valence-arousal (VA) space.
arXiv Detail & Related papers (2020-08-22T20:12:23Z) - Foley Music: Learning to Generate Music from Videos [115.41099127291216]
Foley Music is a system that can synthesize plausible music for a silent video clip about people playing musical instruments.
We first identify two key intermediate representations for a successful video to music generator: body keypoints from videos and MIDI events from audio recordings.
We present a Graph$-$Transformer framework that can accurately predict MIDI event sequences in accordance with the body movements.
arXiv Detail & Related papers (2020-07-21T17:59:06Z) - Music Gesture for Visual Sound Separation [121.36275456396075]
"Music Gesture" is a keypoint-based structured representation to explicitly model the body and finger movements of musicians when they perform music.
We first adopt a context-aware graph network to integrate visual semantic context with body dynamics, and then apply an audio-visual fusion model to associate body movements with the corresponding audio signals.
arXiv Detail & Related papers (2020-04-20T17:53:46Z) - Emotional Video to Audio Transformation Using Deep Recurrent Neural
Networks and a Neuro-Fuzzy System [8.900866276512364]
Current approaches overlook the video's emotional characteristics in the music generation step.
We propose a novel hybrid deep neural network that uses an Adaptive Neuro-Fuzzy Inference System to predict a video's emotion.
Our model can effectively generate audio that matches the scene eliciting a similar emotion from the viewer in both datasets.
arXiv Detail & Related papers (2020-04-05T07:18:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.