Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
- URL: http://arxiv.org/abs/2410.22322v1
- Date: Tue, 29 Oct 2024 17:57:16 GMT
- Title: Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
- Authors: Taiwo A. Adebiyi, Bach Do, Ruda Zhang,
- Abstract summary: We introduce an efficient global optimization strategy for posterior samples based on global rootfinding.
We demonstrate remarkable improvement in both inner- and outer-loop optimization.
We also propose a sample-average formulation of GP-TS, which has a parameter to explicitly control exploitation.
- Score: 2.94944680995069
- License:
- Abstract: Bayesian optimization devolves the global optimization of a costly objective function to the global optimization of a sequence of acquisition functions. This inner-loop optimization can be catastrophically difficult if it involves posterior samples, especially in higher dimensions. We introduce an efficient global optimization strategy for posterior samples based on global rootfinding. It provides gradient-based optimizers with judiciously selected starting points, designed to combine exploitation and exploration. The algorithm scales practically linearly to high dimensions. For posterior sample-based acquisition functions such as Gaussian process Thompson sampling (GP-TS) and variants of entropy search, we demonstrate remarkable improvement in both inner- and outer-loop optimization, surprisingly outperforming alternatives like EI and GP-UCB in most cases. We also propose a sample-average formulation of GP-TS, which has a parameter to explicitly control exploitation and can be computed at the cost of one posterior sample. Our implementation is available at https://github.com/UQUH/TSRoots .
Related papers
- Gaussian Process Thompson Sampling via Rootfinding [2.94944680995069]
Thompson sampling (TS) is a simple, effective policy in Bayesian decision making.
In continuous optimization, the posterior of the objective function is often a Gaussian process (GP), whose sample paths have numerous local optima.
We introduce an efficient global optimization strategy for GP-TS that carefully selects starting points for gradient-based multi-starts.
arXiv Detail & Related papers (2024-10-10T16:06:45Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
We propose a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO)
ZOPO incorporates a Neural Tangent Kernel-based derived Gaussian process into standard zeroth-order optimization for an efficient search of well-performing local optima in prompt optimization.
Remarkably, ZOPO outperforms existing baselines in terms of both the optimization performance and the query efficiency.
arXiv Detail & Related papers (2024-03-05T14:18:15Z) - Random Postprocessing for Combinatorial Bayesian Optimization [0.552480439325792]
We numerically study the effect of a postprocessing method on Bayesian optimization.
We find the postprocessing method significantly reduces the number of sequential steps to find the global optimum.
arXiv Detail & Related papers (2023-09-06T08:59:34Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest.
We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO.
arXiv Detail & Related papers (2023-07-25T09:45:47Z) - Optimistic Optimization of Gaussian Process Samples [30.226274682578172]
A competing, computationally more efficient, global optimization framework is optimistic optimization, which exploits prior knowledge about the geometry of the search space in form of a dissimilarity function.
We argue that there is a new research domain between geometric and probabilistic search, i.e. methods that run drastically faster than traditional Bayesian optimization, while retaining some of the crucial functionality of Bayesian optimization.
arXiv Detail & Related papers (2022-09-02T09:06:24Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
We propose a novel Bayesian surrogate model to balance exploration with exploitation of the search space.
To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model.
To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret.
arXiv Detail & Related papers (2022-05-27T16:43:10Z) - LinEasyBO: Scalable Bayesian Optimization Approach for Analog Circuit
Synthesis via One-Dimensional Subspaces [11.64233949999656]
We propose a fast and robust Bayesian optimization approach via one-dimensional subspaces for analog circuit synthesis.
Our proposed algorithm can accelerate the optimization procedure by up to 9x and 38x compared to LP-EI and REMBOpBO respectively when the batch size is 15.
arXiv Detail & Related papers (2021-09-01T21:25:25Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z) - BOSH: Bayesian Optimization by Sampling Hierarchically [10.10241176664951]
We propose a novel BO routine pairing a hierarchical Gaussian process with an information-theoretic framework to generate a growing pool of realizations.
We demonstrate that BOSH provides more efficient and higher-precision optimization than standard BO across synthetic benchmarks, simulation optimization, reinforcement learning and hyper- parameter tuning tasks.
arXiv Detail & Related papers (2020-07-02T07:35:49Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
In big search spaces the algorithm goes through several low function value regions before reaching the optimum of the function.
One approach to subside this cold start phase is to use prior knowledge that can accelerate the optimisation.
In this paper, we represent the prior knowledge about the function optimum through a prior distribution.
The prior distribution is then used to warp the search space in such a way that space gets expanded around the high probability region of function optimum and shrinks around low probability region of optimum.
arXiv Detail & Related papers (2020-03-27T06:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.