Predicting Future Actions of Reinforcement Learning Agents
- URL: http://arxiv.org/abs/2410.22459v1
- Date: Tue, 29 Oct 2024 18:48:18 GMT
- Title: Predicting Future Actions of Reinforcement Learning Agents
- Authors: Stephen Chung, Scott Niekum, David Krueger,
- Abstract summary: This paper experimentally evaluates and compares the effectiveness of future action and event prediction for three types of reinforcement learning agents.
We employ two approaches: the inner state approach, which involves predicting based on the inner computations of the agents, and a simulation-based approach, which involves unrolling the agent in a learned world model.
Using internal plans proves more robust to model quality compared to simulation-based approaches when predicting actions, while the results for event prediction are more mixed.
- Score: 27.6973598477153
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As reinforcement learning agents become increasingly deployed in real-world scenarios, predicting future agent actions and events during deployment is important for facilitating better human-agent interaction and preventing catastrophic outcomes. This paper experimentally evaluates and compares the effectiveness of future action and event prediction for three types of RL agents: explicitly planning, implicitly planning, and non-planning. We employ two approaches: the inner state approach, which involves predicting based on the inner computations of the agents (e.g., plans or neuron activations), and a simulation-based approach, which involves unrolling the agent in a learned world model. Our results show that the plans of explicitly planning agents are significantly more informative for prediction than the neuron activations of the other types. Furthermore, using internal plans proves more robust to model quality compared to simulation-based approaches when predicting actions, while the results for event prediction are more mixed. These findings highlight the benefits of leveraging inner states and simulations to predict future agent actions and events, thereby improving interaction and safety in real-world deployments.
Related papers
- Interpreting Emergent Planning in Model-Free Reinforcement Learning [13.820891288919002]
We present the first evidence that model-free reinforcement learning agents can learn to plan.
This is achieved by applying a methodology based on concept-based interpretability to a model-free agent in Sokoban.
arXiv Detail & Related papers (2025-04-02T16:24:23Z) - Performative Prediction on Games and Mechanism Design [69.7933059664256]
We study a collective risk dilemma where agents decide whether to trust predictions based on past accuracy.
As predictions shape collective outcomes, social welfare arises naturally as a metric of concern.
We show how to achieve better trade-offs and use them for mechanism design.
arXiv Detail & Related papers (2024-08-09T16:03:44Z) - PreAct: Prediction Enhances Agent's Planning Ability [23.058048254571027]
We present **PreAct**, an agent framework that integrates **pre**diction, **rea**soning, and **act**ion.
By utilizing the information derived from predictions, the large language model (LLM) agent can provide a wider range and more strategically focused reasoning.
arXiv Detail & Related papers (2024-02-18T10:15:38Z) - SSL-Interactions: Pretext Tasks for Interactive Trajectory Prediction [4.286256266868156]
We present SSL-Interactions that proposes pretext tasks to enhance interaction modeling for trajectory prediction.
We introduce four interaction-aware pretext tasks to encapsulate various aspects of agent interactions.
We also propose an approach to curate interaction-heavy scenarios from datasets.
arXiv Detail & Related papers (2024-01-15T14:43:40Z) - Interactive Joint Planning for Autonomous Vehicles [19.479300967537675]
In interactive driving scenarios, the actions of one agent greatly influences those of its neighbors.
We present Interactive Joint Planning (IJP) that bridges MPC with learned prediction models.
IJP significantly outperforms the baselines that are either without joint optimization or running sampling-based planning.
arXiv Detail & Related papers (2023-10-27T17:48:25Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - TAE: A Semi-supervised Controllable Behavior-aware Trajectory Generator
and Predictor [3.6955256596550137]
Trajectory generation and prediction play important roles in planner evaluation and decision making for intelligent vehicles.
We propose a behavior-aware Trajectory Autoencoder (TAE) that explicitly models drivers' behavior.
Our model addresses trajectory generation and prediction in a unified architecture and benefits both tasks.
arXiv Detail & Related papers (2022-03-02T17:37:44Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well as future scene structures.
We adopt a novel multi-instance event prediction module to estimate the possible interaction among agents in the ego-centric view.
We design a sequential action sampling strategy to better leverage predicted states on both scene-level and instance-level.
arXiv Detail & Related papers (2021-01-14T22:21:25Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
We work to understand the gains and peculiarities of planning employed as forethought via forward models or as hindsight operating with backward models.
We investigate the best use of models in planning, primarily focusing on the selection of states in which predictions should be (re)-evaluated.
arXiv Detail & Related papers (2020-10-26T16:00:47Z) - EvolveGraph: Multi-Agent Trajectory Prediction with Dynamic Relational
Reasoning [41.42230144157259]
We propose a generic trajectory forecasting framework with explicit relational structure recognition and prediction via latent interaction graphs.
Considering the uncertainty of future behaviors, the model is designed to provide multi-modal prediction hypotheses.
We introduce a double-stage training pipeline which not only improves training efficiency and accelerates convergence, but also enhances model performance.
arXiv Detail & Related papers (2020-03-31T02:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.