Vertical Federated Learning with Missing Features During Training and Inference
- URL: http://arxiv.org/abs/2410.22564v1
- Date: Tue, 29 Oct 2024 22:09:31 GMT
- Title: Vertical Federated Learning with Missing Features During Training and Inference
- Authors: Pedro Valdeira, Shiqiang Wang, Yuejie Chi,
- Abstract summary: We propose a vertical federated learning method for efficient training and inference of neural network-based models.
Our approach is simple yet effective, relying on the strategic sharing of parameters on task-sampling and inference.
Numerical experiments show improved performance of LASER-VFL over the baselines.
- Score: 37.44022318612869
- License:
- Abstract: Vertical federated learning trains models from feature-partitioned datasets across multiple clients, who collaborate without sharing their local data. Standard approaches assume that all feature partitions are available during both training and inference. Yet, in practice, this assumption rarely holds, as for many samples only a subset of the clients observe their partition. However, not utilizing incomplete samples during training harms generalization, and not supporting them during inference limits the utility of the model. Moreover, if any client leaves the federation after training, its partition becomes unavailable, rendering the learned model unusable. Missing feature blocks are therefore a key challenge limiting the applicability of vertical federated learning in real-world scenarios. To address this, we propose LASER-VFL, a vertical federated learning method for efficient training and inference of split neural network-based models that is capable of handling arbitrary sets of partitions. Our approach is simple yet effective, relying on the strategic sharing of model parameters and on task-sampling to train a family of predictors. We show that LASER-VFL achieves a $\mathcal{O}({1}/{\sqrt{T}})$ convergence rate for nonconvex objectives in general, $\mathcal{O}({1}/{T})$ for sufficiently large batch sizes, and linear convergence under the Polyak-{\L}ojasiewicz inequality. Numerical experiments show improved performance of LASER-VFL over the baselines. Remarkably, this is the case even in the absence of missing features. For example, for CIFAR-100, we see an improvement in accuracy of $21.4\%$ when each of four feature blocks is observed with a probability of 0.5 and of $12.2\%$ when all features are observed.
Related papers
- Federated Learning under Partially Class-Disjoint Data via Manifold Reshaping [64.58402571292723]
We propose a manifold reshaping approach called FedMR to calibrate the feature space of local training.
We conduct extensive experiments on a range of datasets to demonstrate that our FedMR achieves much higher accuracy and better communication efficiency.
arXiv Detail & Related papers (2024-05-29T10:56:13Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
Longtailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples.
Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance.
We propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space.
arXiv Detail & Related papers (2024-03-11T13:44:49Z) - On the Convergence of Federated Averaging under Partial Participation for Over-parameterized Neural Networks [13.2844023993979]
Federated learning (FL) is a widely employed distributed paradigm for collaboratively machine learning models from multiple clients without sharing local data.
In this paper, we show that FedAvg converges to a global minimum at a global rate at a global focus.
arXiv Detail & Related papers (2023-10-09T07:56:56Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Test-Time Adaptation with CLIP Reward for Zero-Shot Generalization in
Vision-Language Models [76.410400238974]
We propose TTA with feedback to rectify the model output and prevent the model from becoming blindly confident.
A CLIP model is adopted as the reward model during TTA and provides feedback for the VLM.
The proposed textitreinforcement learning with CLIP feedback(RLCF) framework is highly flexible and universal.
arXiv Detail & Related papers (2023-05-29T11:03:59Z) - FedIN: Federated Intermediate Layers Learning for Model Heterogeneity [7.781409257429762]
Federated learning (FL) facilitates edge devices to cooperatively train a global shared model while maintaining the training data locally and privately.
In this study, we propose an FL method called Federated Intermediate Layers Learning (FedIN), supporting heterogeneous models without relying on any public dataset.
Experiment results demonstrate the superior performance of FedIN in heterogeneous model environments compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2023-04-03T07:20:43Z) - GLASU: A Communication-Efficient Algorithm for Federated Learning with
Vertically Distributed Graph Data [44.02629656473639]
We propose a model splitting method that splits a backbone GNN across the clients and the server and a communication-efficient algorithm, GLASU, to train such a model.
We offer a theoretical analysis and conduct extensive numerical experiments on real-world datasets, showing that the proposed algorithm effectively trains a GNN model, whose performance matches that of the backbone GNN when trained in a centralized manner.
arXiv Detail & Related papers (2023-03-16T17:47:55Z) - One-shot Federated Learning without Server-side Training [42.59845771101823]
One-shot federated learning is gaining popularity as a way to reduce communication cost between clients and the server.
Most of the existing one-shot FL methods are based on Knowledge Distillation; however, distillation based approach requires an extra training phase and depends on publicly available data sets or generated pseudo samples.
In this work, we consider a novel and challenging cross-silo setting: performing a single round of parameter aggregation on the local models without server-side training.
arXiv Detail & Related papers (2022-04-26T01:45:37Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - FedCVT: Semi-supervised Vertical Federated Learning with Cross-view Training [9.638604434238882]
Federated Cross-view Training (FedCVT) is a semi-supervised learning approach that improves the performance of a vertical federated learning model.
FedCVT does not require parties to share their original data and model parameters, thus preserving data privacy.
arXiv Detail & Related papers (2020-08-25T06:20:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.