FISC: Federated Domain Generalization via Interpolative Style Transfer and Contrastive Learning
- URL: http://arxiv.org/abs/2410.22622v1
- Date: Wed, 30 Oct 2024 00:50:23 GMT
- Title: FISC: Federated Domain Generalization via Interpolative Style Transfer and Contrastive Learning
- Authors: Dung Thuy Nguyen, Taylor T. Johnson, Kevin Leach,
- Abstract summary: Federated Learning (FL) shows promise in preserving privacy and enabling collaborative learning.
We introduce FISC, a novel FL domain generalization paradigm that handles more complex domain distributions across clients.
Our method achieves accuracy improvements ranging from 3.64% to 57.22% on unseen domains.
- Score: 5.584498171854557
- License:
- Abstract: Federated Learning (FL) shows promise in preserving privacy and enabling collaborative learning. However, most current solutions focus on private data collected from a single domain. A significant challenge arises when client data comes from diverse domains (i.e., domain shift), leading to poor performance on unseen domains. Existing Federated Domain Generalization approaches address this problem but assume each client holds data for an entire domain, limiting their practicality in real-world scenarios with domain-based heterogeneity and client sampling. To overcome this, we introduce FISC, a novel FL domain generalization paradigm that handles more complex domain distributions across clients. FISC enables learning across domains by extracting an interpolative style from local styles and employing contrastive learning. This strategy gives clients multi-domain representations and unbiased convergent targets. Empirical results on multiple datasets, including PACS, Office-Home, and IWildCam, show FISC outperforms state-of-the-art (SOTA) methods. Our method achieves accuracy improvements ranging from 3.64% to 57.22% on unseen domains. Our code is available at https://anonymous.4open.science/r/FISC-AAAI-16107.
Related papers
- FedCCRL: Federated Domain Generalization with Cross-Client Representation Learning [4.703379311088474]
Domain Generalization (DG) aims to train models that can effectively generalize to unseen domains.
In Federated Learning (FL), where clients collaboratively train a model without directly sharing their data, most existing DG algorithms are not directly applicable to the FL setting.
We propose FedCCRL, a lightweight federated domain generalization method that significantly improves the model's generalization ability while preserving privacy.
arXiv Detail & Related papers (2024-10-15T04:44:21Z) - Feature Diversification and Adaptation for Federated Domain Generalization [27.646565383214227]
In real-world applications, local clients often operate within their limited domains, leading to a domain shift' across clients.
We introduce the concept of federated feature diversification, which helps local models learn client-invariant representations while preserving privacy.
Our resultant global model shows robust performance on unseen test domain data.
arXiv Detail & Related papers (2024-07-11T07:45:10Z) - Domain Adaptive Few-Shot Open-Set Learning [36.39622440120531]
We propose Domain Adaptive Few-Shot Open Set Recognition (DA-FSOS) and introduce a meta-learning-based architecture named DAFOSNET.
Our training approach ensures that DAFOS-NET can generalize well to new scenarios in the target domain.
We present three benchmarks for DA-FSOS based on the Office-Home, mini-ImageNet/CUB, and DomainNet datasets.
arXiv Detail & Related papers (2023-09-22T12:04:47Z) - FACT: Federated Adversarial Cross Training [0.0]
Federated Adrial Cross Training (FACT) uses implicit domain differences between source clients to identify domain shifts in the target domain.
We empirically show that FACT outperforms state-of-the-art federated, non-federated and source-free domain adaptation models.
arXiv Detail & Related papers (2023-06-01T12:25:43Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
Federated learning is a distributed machine learning approach which enables a shared server model to learn by aggregating the locally-computed parameter updates with the training data from spatially-distributed client silos.
We propose the Federated Invariant Learning Consistency (FedILC) approach, which leverages the gradient covariance and the geometric mean of Hessians to capture both inter-silo and intra-silo consistencies.
This is relevant to various fields such as medical healthcare, computer vision, and the Internet of Things (IoT)
arXiv Detail & Related papers (2022-05-19T03:32:03Z) - Federated Learning with Domain Generalization [11.92860245410696]
Federated Learning enables a group of clients to jointly train a machine learning model with the help of a centralized server.
In practice, the model trained over multiple source domains may have poor generalization performance on unseen target domains.
We propose FedADG to equip federated learning with domain generalization capability.
arXiv Detail & Related papers (2021-11-20T01:02:36Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
We propose a principled meta-learning based approach to OCDA for semantic segmentation.
We cluster target domain into multiple sub-target domains by image styles, extracted in an unsupervised manner.
A meta-learner is thereafter deployed to learn to fuse sub-target domain-specific predictions, conditioned upon the style code.
We learn to online update the model by model-agnostic meta-learning (MAML) algorithm, thus to further improve generalization.
arXiv Detail & Related papers (2020-12-15T13:21:54Z) - Batch Normalization Embeddings for Deep Domain Generalization [50.51405390150066]
Domain generalization aims at training machine learning models to perform robustly across different and unseen domains.
We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks.
arXiv Detail & Related papers (2020-11-25T12:02:57Z) - Multi-Domain Spoken Language Understanding Using Domain- and Task-Aware
Parameterization [78.93669377251396]
Spoken language understanding has been addressed as a supervised learning problem, where a set of training data is available for each domain.
One existing approach solves the problem by conducting multi-domain learning, using shared parameters for joint training across domains.
We propose to improve the parameterization of this method by using domain-specific and task-specific model parameters.
arXiv Detail & Related papers (2020-04-30T15:15:40Z) - Mind the Gap: Enlarging the Domain Gap in Open Set Domain Adaptation [65.38975706997088]
Open set domain adaptation (OSDA) assumes the presence of unknown classes in the target domain.
We show that existing state-of-the-art methods suffer a considerable performance drop in the presence of larger domain gaps.
We propose a novel framework to specifically address the larger domain gaps.
arXiv Detail & Related papers (2020-03-08T14:20:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.