V2X-Assisted Distributed Computing and Control Framework for Connected and Automated Vehicles under Ramp Merging Scenario
- URL: http://arxiv.org/abs/2410.22987v1
- Date: Wed, 30 Oct 2024 12:56:49 GMT
- Title: V2X-Assisted Distributed Computing and Control Framework for Connected and Automated Vehicles under Ramp Merging Scenario
- Authors: Qiong Wu, Jiahou Chu, Pingyi Fan, Kezhi Wang, Nan Cheng, Wen Chen, Khaled B. Letaief,
- Abstract summary: This paper investigates distributed computing control of connected and automated vehicles (CAVs) in ramp scenario under cyber-physical system.
Unlike existing method, our method can distribute the computational task among CAVs and carry out parallel computation through V2X communication.
- Score: 36.19449852204522
- License:
- Abstract: This paper investigates distributed computing and cooperative control of connected and automated vehicles (CAVs) in ramp merging scenario under transportation cyber-physical system. Firstly, a centralized cooperative trajectory planning problem is formulated subject to the safely constraints and traffic performance in ramp merging scenario, where the trajectories of all vehicles are jointly optimized. To get rid of the reliance on a central controller and reduce computation time, a distributed solution to this problem implemented among CAVs through Vehicles-to-Everything (V2X) communication is proposed. Unlike existing method, our method can distribute the computational task among CAVs and carry out parallel solving through V2X communication. Then, a multi-vehicles model predictive control (MPC) problem aimed at maximizing system stability and minimizing control input is formulated based on the solution of the first problem subject to strict safety constants and input limits. Due to these complex constraints, this problem becomes high-dimensional, centralized, and non-convex. To solve it in a short time, a decomposition and convex reformulation method, namely distributed cooperative iterative model predictive control (DCIMPC), is proposed. This method leverages the communication capability of CAVs to decompose the problem, making full use of the computational resources on vehicles to achieve fast solutions and distributed control. The two above problems with their corresponding solving methods form the systemic framework of the V2X assisted distributed computing and control. Simulations have been conducted to evaluate the framework's convergence, safety, and solving speed. Additionally, extra experiments are conducted to validate the performance of DCIMPC. The results show that our method can greatly improve computation speed without sacrificing system performance.
Related papers
- Augmented Lagrangian-Based Safe Reinforcement Learning Approach for Distribution System Volt/VAR Control [1.1059341532498634]
This paper formulates the Volt- VAR control problem as a constrained Markov decision process (CMDP)
A novel safe off-policy reinforcement learning (RL) approach is proposed in this paper to solve the CMDP.
A two-stage strategy is adopted for offline training and online execution, so the accurate distribution system model is no longer needed.
arXiv Detail & Related papers (2024-10-19T19:45:09Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory.
This paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework.
arXiv Detail & Related papers (2024-09-19T14:36:00Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Development of a CAV-based Intersection Control System and Corridor
Level Impact Assessment [0.696125353550498]
This paper presents a signal-free intersection control system for CAVs by combination of a pixel reservation algorithm and a Deep Reinforcement Learning (DRL) decision-making logic.
The proposed model reduces delay by 50%, 29%, and 23% in moderate, high, and extreme volume regimes compared to the other CAV-based control system.
arXiv Detail & Related papers (2022-08-21T21:56:20Z) - Real-time Cooperative Vehicle Coordination at Unsignalized Road
Intersections [7.860567520771493]
Cooperative coordination at unsignalized road intersections aims to improve the safety driving traffic throughput for connected and automated vehicles.
We introduce a model-free Markov Decision Process (MDP) and tackle it by a Twin Delayed Deep Deterministic Policy (TD3)-based strategy in the deep reinforcement learning framework.
We show that the proposed strategy could achieve near-optimal performance in sub-static coordination scenarios and significantly improve control in the realistic continuous flow.
arXiv Detail & Related papers (2022-05-03T02:56:02Z) - Online V2X Scheduling for Raw-Level Cooperative Perception [21.099819062731463]
Cooperative perception of connected vehicles comes to the rescue when the field of view restricts stand-alone intelligence.
We present a model of raw-level cooperative perception and formulate the energy minimization problem of sensor sharing scheduling.
We propose an online learning-based algorithm with logarithmic performance loss, achieving a decent trade-off between exploration and exploitation.
arXiv Detail & Related papers (2022-02-12T15:16:45Z) - Distributed Algorithms for Linearly-Solvable Optimal Control in
Networked Multi-Agent Systems [15.782670973813774]
A distributed framework is proposed to partition the optimal control problem of a networked MAS into several local optimal control problems.
For discrete-time systems, the joint Bellman equation of each subsystem is transformed into a system of linear equations.
For continuous-time systems, the joint optimality equation of each subsystem is converted into a linear partial differential equation.
arXiv Detail & Related papers (2021-02-18T01:31:17Z) - Federated Learning on the Road: Autonomous Controller Design for
Connected and Autonomous Vehicles [109.71532364079711]
A new federated learning (FL) framework is proposed for designing the autonomous controller of connected and autonomous vehicles (CAVs)
A novel dynamic federated proximal (DFP) algorithm is proposed that accounts for the mobility of CAVs, the wireless fading channels, and the unbalanced and nonindependent and identically distributed data across CAVs.
A rigorous convergence analysis is performed for the proposed algorithm to identify how fast the CAVs converge to using the optimal controller.
arXiv Detail & Related papers (2021-02-05T19:57:47Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.