Statistical-Computational Trade-offs for Density Estimation
- URL: http://arxiv.org/abs/2410.23087v1
- Date: Wed, 30 Oct 2024 15:03:33 GMT
- Title: Statistical-Computational Trade-offs for Density Estimation
- Authors: Anders Aamand, Alexandr Andoni, Justin Y. Chen, Piotr Indyk, Shyam Narayanan, Sandeep Silwal, Haike Xu,
- Abstract summary: We show that for a broad class of data structures their bounds cannot be significantly improved.
This is a novel emphstatistical-computational trade-off for density estimation.
- Score: 60.81548752871115
- License:
- Abstract: We study the density estimation problem defined as follows: given $k$ distributions $p_1, \ldots, p_k$ over a discrete domain $[n]$, as well as a collection of samples chosen from a ``query'' distribution $q$ over $[n]$, output $p_i$ that is ``close'' to $q$. Recently~\cite{aamand2023data} gave the first and only known result that achieves sublinear bounds in {\em both} the sampling complexity and the query time while preserving polynomial data structure space. However, their improvement over linear samples and time is only by subpolynomial factors. Our main result is a lower bound showing that, for a broad class of data structures, their bounds cannot be significantly improved. In particular, if an algorithm uses $O(n/\log^c k)$ samples for some constant $c>0$ and polynomial space, then the query time of the data structure must be at least $k^{1-O(1)/\log \log k}$, i.e., close to linear in the number of distributions $k$. This is a novel \emph{statistical-computational} trade-off for density estimation, demonstrating that any data structure must use close to a linear number of samples or take close to linear query time. The lower bound holds even in the realizable case where $q=p_i$ for some $i$, and when the distributions are flat (specifically, all distributions are uniform over half of the domain $[n]$). We also give a simple data structure for our lower bound instance with asymptotically matching upper bounds. Experiments show that the data structure is quite efficient in practice.
Related papers
- Data Structures for Density Estimation [66.36971978162461]
Given a sublinear (in $n$) number of samples from $p$, our main result is the first data structure that identifies $v_i$ in time sublinear in $k$.
We also give an improved version of the algorithm of Acharya et al. that reports $v_i$ in time linear in $k$.
arXiv Detail & Related papers (2023-06-20T06:13:56Z) - List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering [42.526664955704746]
We develop a novel, conceptually simpler technique for list-decodable sparse mean estimation.
In particular, for distributions with "certifiably bounded" $t-th moments in $k$-sparse directions, our algorithm achieves error of $(1/alpha)O (1/t)$ with sample complexity $m = (klog(n))O(t)/alpha(mnt)$.
For the special case of Gaussian inliers, our algorithm achieves the optimal error guarantee of $Theta (sqrtlog
arXiv Detail & Related papers (2022-06-10T17:38:18Z) - TURF: A Two-factor, Universal, Robust, Fast Distribution Learning
Algorithm [64.13217062232874]
One of its most powerful and successful modalities approximates every distribution to an $ell$ distance essentially at most a constant times larger than its closest $t$-piece degree-$d_$.
We provide a method that estimates this number near-optimally, hence helps approach the best possible approximation.
arXiv Detail & Related papers (2022-02-15T03:49:28Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Faster DBSCAN via subsampled similarity queries [42.93847281082316]
DBSCAN is a popular density-based clustering algorithm.
We propose SNG-DBSCAN, which clusters based on a subsampled $epsilon$-neighborhood graph.
arXiv Detail & Related papers (2020-06-11T18:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.