Comparative Analysis of Demonstration Selection Algorithms for LLM In-Context Learning
- URL: http://arxiv.org/abs/2410.23099v1
- Date: Wed, 30 Oct 2024 15:11:58 GMT
- Title: Comparative Analysis of Demonstration Selection Algorithms for LLM In-Context Learning
- Authors: Dong Shu, Mengnan Du,
- Abstract summary: In-context learning can help Large Language Models (LLMs) to adapt new tasks without additional training.
Despite all the proposed demonstration selection algorithms, efficiency and effectiveness remain unclear.
This lack of clarity makes it difficult to apply these algorithms in real-world scenarios.
- Score: 18.58278188791548
- License:
- Abstract: In-context learning can help Large Language Models (LLMs) to adapt new tasks without additional training. However, this performance heavily depends on the quality of the demonstrations, driving research into effective demonstration selection algorithms to optimize this process. These algorithms assist users in selecting the best $k$ input-label pairs (demonstration examples) based on a given test input, enabling LLMs to in-context learn the relationship between the provided examples and the test inputs. Despite all the proposed demonstration selection algorithms, their efficiency and effectiveness remain unclear. This lack of clarity make it difficult to apply these algorithms in real-world scenarios and poses challenges for future research aimed at developing improved methods. This paper revisits six proposed algorithms, evaluating them on five datasets from both efficiency and effectiveness perspectives. Our experiments reveal significant variations in algorithm performance across different tasks, with some methods struggling to outperform random selection in certain scenarios. We also find that increasing the number of demonstrations does not always lead to better performance, and that there are often trade-offs between accuracy and computational efficiency. Our code is available at https://github.com/Tizzzzy/Demonstration_Selection_Overview.
Related papers
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
This paper investigates how Active Learning algorithms can serve as effective demonstration selection methods for in-context learning.
We show that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
arXiv Detail & Related papers (2023-05-23T17:16:04Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Algorithm Selection for Deep Active Learning with Imbalanced Datasets [11.902019233549474]
Active learning aims to reduce the number of labeled examples needed to train deep networks.
It is difficult to know in advance which active learning strategy will perform well or best in a given application.
We propose the first adaptive algorithm selection strategy for deep active learning.
arXiv Detail & Related papers (2023-02-14T19:59:49Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Probabilistic Active Learning for Active Class Selection [3.6471065658293043]
In machine learning, active class selection (ACS) algorithms aim to actively select a class and ask the oracle to provide an instance for that class.
We propose a new algorithm (PAL-ACS) that transforms the ACS problem into an active learning task by introducing pseudo instances.
arXiv Detail & Related papers (2021-08-09T09:20:19Z) - Towards Understanding the Behaviors of Optimal Deep Active Learning
Algorithms [19.65665942630067]
Active learning (AL) algorithms may achieve better performance with fewer data because the model guides the data selection process.
There is little study on what the optimal AL looks like, which would help researchers understand where their models fall short.
We present a simulated annealing algorithm to search for this optimal oracle and analyze it for several tasks.
arXiv Detail & Related papers (2020-12-29T22:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.