(FL)$^2$: Overcoming Few Labels in Federated Semi-Supervised Learning
- URL: http://arxiv.org/abs/2410.23227v2
- Date: Thu, 31 Oct 2024 04:05:11 GMT
- Title: (FL)$^2$: Overcoming Few Labels in Federated Semi-Supervised Learning
- Authors: Seungjoo Lee, Thanh-Long V. Le, Jaemin Shin, Sung-Ju Lee,
- Abstract summary: Federated Learning (FL) is a distributed machine learning framework that trains accurate global models while preserving clients' privacy-sensitive data.
Most FL approaches assume that clients possess labeled data, which is often not the case in practice.
We propose $(FL)2$, a robust training method for unlabeled clients using sharpness-aware consistency regularization.
- Score: 4.803231218533992
- License:
- Abstract: Federated Learning (FL) is a distributed machine learning framework that trains accurate global models while preserving clients' privacy-sensitive data. However, most FL approaches assume that clients possess labeled data, which is often not the case in practice. Federated Semi-Supervised Learning (FSSL) addresses this label deficiency problem, targeting situations where only the server has a small amount of labeled data while clients do not. However, a significant performance gap exists between Centralized Semi-Supervised Learning (SSL) and FSSL. This gap arises from confirmation bias, which is more pronounced in FSSL due to multiple local training epochs and the separation of labeled and unlabeled data. We propose $(FL)^2$, a robust training method for unlabeled clients using sharpness-aware consistency regularization. We show that regularizing the original pseudo-labeling loss is suboptimal, and hence we carefully select unlabeled samples for regularization. We further introduce client-specific adaptive thresholding and learning status-aware aggregation to adjust the training process based on the learning progress of each client. Our experiments on three benchmark datasets demonstrate that our approach significantly improves performance and bridges the gap with SSL, particularly in scenarios with scarce labeled data.
Related papers
- Generalized Semi-Supervised Learning via Self-Supervised Feature Adaptation [87.17768598044427]
Traditional semi-supervised learning assumes that the feature distributions of labeled and unlabeled data are consistent.
We propose Self-Supervised Feature Adaptation (SSFA), a generic framework for improving SSL performance when labeled and unlabeled data come from different distributions.
Our proposed SSFA is applicable to various pseudo-label-based SSL learners and significantly improves performance in labeled, unlabeled, and even unseen distributions.
arXiv Detail & Related papers (2024-05-31T03:13:45Z) - Federated Learning with Only Positive Labels by Exploring Label Correlations [78.59613150221597]
Federated learning aims to collaboratively learn a model by using the data from multiple users under privacy constraints.
In this paper, we study the multi-label classification problem under the federated learning setting.
We propose a novel and generic method termed Federated Averaging by exploring Label Correlations (FedALC)
arXiv Detail & Related papers (2024-04-24T02:22:50Z) - FedAnchor: Enhancing Federated Semi-Supervised Learning with Label
Contrastive Loss for Unlabeled Clients [19.3885479917635]
Federated learning (FL) is a distributed learning paradigm that facilitates collaborative training of a shared global model across devices.
We propose FedAnchor, an innovative FSSL method that introduces a unique double-head structure, called anchor head, paired with the classification head trained exclusively on labeled anchor data on the server.
Our approach mitigates the confirmation bias and overfitting issues associated with pseudo-labeling techniques based on high-confidence model prediction samples.
arXiv Detail & Related papers (2024-02-15T18:48:21Z) - FlatMatch: Bridging Labeled Data and Unlabeled Data with Cross-Sharpness
for Semi-Supervised Learning [73.13448439554497]
Semi-Supervised Learning (SSL) has been an effective way to leverage abundant unlabeled data with extremely scarce labeled data.
Most SSL methods are commonly based on instance-wise consistency between different data transformations.
We propose FlatMatch which minimizes a cross-sharpness measure to ensure consistent learning performance between the two datasets.
arXiv Detail & Related papers (2023-10-25T06:57:59Z) - Combating Data Imbalances in Federated Semi-supervised Learning with
Dual Regulators [40.12377870379059]
Federated semi-supervised learning (FSSL) emerges to train models from a small fraction of labeled data.
We propose a novel FSSL framework with dual regulators, FedDure.
We show that FedDure is superior to the existing methods across a wide range of settings.
arXiv Detail & Related papers (2023-07-11T15:45:03Z) - Pseudo-Labeled Auto-Curriculum Learning for Semi-Supervised Keypoint
Localization [88.74813798138466]
Localizing keypoints of an object is a basic visual problem.
Supervised learning of a keypoint localization network often requires a large amount of data.
We propose to automatically select reliable pseudo-labeled samples with a series of dynamic thresholds.
arXiv Detail & Related papers (2022-01-21T09:51:58Z) - Federated Semi-Supervised Learning with Class Distribution Mismatch [34.46190258291223]
Federated semi-supervised learning (Fed-SSL) is an attractive solution for fully utilizing both labeled and unlabeled data.
We introduce two proper regularization terms that can effectively alleviate the class distribution mismatch problem in Fed-SSL.
We leverage the variance reduction and normalized averaging techniques to develop a novel Fed-SSL algorithm.
arXiv Detail & Related papers (2021-10-29T14:18:20Z) - FedSEAL: Semi-Supervised Federated Learning with Self-Ensemble Learning
and Negative Learning [7.771967424619346]
Federated learning (FL) is a popular decentralized and privacy-preserving machine learning (FL) framework.
In this paper, we propose a new FL algorithm, called FedSEAL, to solve this Semi-Supervised Federated Learning (SSFL) problem.
Our algorithm utilizes self-ensemble learning and complementary negative learning to enhance both the accuracy and the efficiency of clients' unsupervised learning on unlabeled data.
arXiv Detail & Related papers (2021-10-15T03:03:23Z) - Self-Tuning for Data-Efficient Deep Learning [75.34320911480008]
Self-Tuning is a novel approach to enable data-efficient deep learning.
It unifies the exploration of labeled and unlabeled data and the transfer of a pre-trained model.
It outperforms its SSL and TL counterparts on five tasks by sharp margins.
arXiv Detail & Related papers (2021-02-25T14:56:19Z) - Federated Semi-Supervised Learning with Inter-Client Consistency &
Disjoint Learning [78.88007892742438]
We study two essential scenarios of Federated Semi-Supervised Learning (FSSL) based on the location of the labeled data.
We propose a novel method to tackle the problems, which we refer to as Federated Matching (FedMatch)
arXiv Detail & Related papers (2020-06-22T09:43:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.