Keypoint Abstraction using Large Models for Object-Relative Imitation Learning
- URL: http://arxiv.org/abs/2410.23254v1
- Date: Wed, 30 Oct 2024 17:37:31 GMT
- Title: Keypoint Abstraction using Large Models for Object-Relative Imitation Learning
- Authors: Xiaolin Fang, Bo-Ruei Huang, Jiayuan Mao, Jasmine Shone, Joshua B. Tenenbaum, Tomás Lozano-Pérez, Leslie Pack Kaelbling,
- Abstract summary: Generalization to novel object configurations and instances across diverse tasks and environments is a critical challenge in robotics.
Keypoint-based representations have been proven effective as a succinct representation for essential object capturing features.
We propose KALM, a framework that leverages large pre-trained vision-language models to automatically generate task-relevant and cross-instance consistent keypoints.
- Score: 78.92043196054071
- License:
- Abstract: Generalization to novel object configurations and instances across diverse tasks and environments is a critical challenge in robotics. Keypoint-based representations have been proven effective as a succinct representation for capturing essential object features, and for establishing a reference frame in action prediction, enabling data-efficient learning of robot skills. However, their manual design nature and reliance on additional human labels limit their scalability. In this paper, we propose KALM, a framework that leverages large pre-trained vision-language models (LMs) to automatically generate task-relevant and cross-instance consistent keypoints. KALM distills robust and consistent keypoints across views and objects by generating proposals using LMs and verifies them against a small set of robot demonstration data. Based on the generated keypoints, we can train keypoint-conditioned policy models that predict actions in keypoint-centric frames, enabling robots to generalize effectively across varying object poses, camera views, and object instances with similar functional shapes. Our method demonstrates strong performance in the real world, adapting to different tasks and environments from only a handful of demonstrations while requiring no additional labels. Website: https://kalm-il.github.io/
Related papers
- Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - AnyOKP: One-Shot and Instance-Aware Object Keypoint Extraction with
Pretrained ViT [28.050252998288478]
We propose a one-shot instance-aware object keypoint (OKP) extraction approach, AnyOKP, for flexible object-centric visual perception.
An off-the-shelf petrained vision transformer (ViT) is deployed for generalizable and transferable feature extraction.
AnyOKP is evaluated on real object images collected with the cameras of a robot arm, a mobile robot, and a surgical robot.
arXiv Detail & Related papers (2023-09-15T04:05:01Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.
Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.
Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Efficient and Robust Training of Dense Object Nets for Multi-Object
Robot Manipulation [8.321536457963655]
We propose a framework for robust and efficient training of Dense Object Nets (DON)
We focus on training with multi-object data instead of singulated objects, combined with a well-chosen augmentation scheme.
We demonstrate the robustness and accuracy of our proposed framework on a real-world robotic grasping task.
arXiv Detail & Related papers (2022-06-24T08:24:42Z) - KINet: Unsupervised Forward Models for Robotic Pushing Manipulation [8.572983995175909]
We introduce KINet -- an unsupervised framework to reason about object interactions based on a keypoint representation.
Our model learns to associate objects with keypoint coordinates and discovers a graph representation of the system.
By learning to perform physical reasoning in the keypoint space, our model automatically generalizes to scenarios with a different number of objects.
arXiv Detail & Related papers (2022-02-18T03:32:08Z) - End-to-end Reinforcement Learning of Robotic Manipulation with Robust
Keypoints Representation [7.374994747693731]
We present an end-to-end Reinforcement Learning framework for robotic manipulation tasks, using a robust and efficient keypoints representation.
The proposed method learns keypoints from camera images as the state representation, through a self-supervised autoencoder architecture.
We demonstrate the effectiveness of the proposed method on robotic manipulation tasks including grasping and pushing, in different scenarios.
arXiv Detail & Related papers (2022-02-12T09:58:09Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z) - Semantically Grounded Object Matching for Robust Robotic Scene
Rearrangement [21.736603698556042]
We present a novel approach to object matching that uses a large pre-trained vision-language model to match objects in a cross-instance setting.
We demonstrate that this provides considerably improved matching performance in cross-instance settings.
arXiv Detail & Related papers (2021-11-15T18:39:43Z) - Learning Models as Functionals of Signed-Distance Fields for
Manipulation Planning [51.74463056899926]
This work proposes an optimization-based manipulation planning framework where the objectives are learned functionals of signed-distance fields that represent objects in the scene.
We show that representing objects as signed-distance fields not only enables to learn and represent a variety of models with higher accuracy compared to point-cloud and occupancy measure representations.
arXiv Detail & Related papers (2021-10-02T12:36:58Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
We present a self-supervised method for model-based visual goal reaching.
Our approach learns entirely using offline, unlabeled data.
We find that this approach substantially outperforms both model-free and model-based prior methods.
arXiv Detail & Related papers (2020-12-30T23:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.