SlowFast-VGen: Slow-Fast Learning for Action-Driven Long Video Generation
- URL: http://arxiv.org/abs/2410.23277v2
- Date: Thu, 31 Oct 2024 18:03:51 GMT
- Title: SlowFast-VGen: Slow-Fast Learning for Action-Driven Long Video Generation
- Authors: Yining Hong, Beide Liu, Maxine Wu, Yuanhao Zhai, Kai-Wei Chang, Linjie Li, Kevin Lin, Chung-Ching Lin, Jianfeng Wang, Zhengyuan Yang, Yingnian Wu, Lijuan Wang,
- Abstract summary: SlowFast-VGen is a novel dual-speed learning system for action-driven long video generation.
Our approach incorporates a conditional video diffusion model for the slow learning of world dynamics.
We propose a slow-fast learning loop algorithm that seamlessly integrates the inner fast learning loop into the outer slow learning loop.
- Score: 153.46240555355408
- License:
- Abstract: Human beings are endowed with a complementary learning system, which bridges the slow learning of general world dynamics with fast storage of episodic memory from a new experience. Previous video generation models, however, primarily focus on slow learning by pre-training on vast amounts of data, overlooking the fast learning phase crucial for episodic memory storage. This oversight leads to inconsistencies across temporally distant frames when generating longer videos, as these frames fall beyond the model's context window. To this end, we introduce SlowFast-VGen, a novel dual-speed learning system for action-driven long video generation. Our approach incorporates a masked conditional video diffusion model for the slow learning of world dynamics, alongside an inference-time fast learning strategy based on a temporal LoRA module. Specifically, the fast learning process updates its temporal LoRA parameters based on local inputs and outputs, thereby efficiently storing episodic memory in its parameters. We further propose a slow-fast learning loop algorithm that seamlessly integrates the inner fast learning loop into the outer slow learning loop, enabling the recall of prior multi-episode experiences for context-aware skill learning. To facilitate the slow learning of an approximate world model, we collect a large-scale dataset of 200k videos with language action annotations, covering a wide range of scenarios. Extensive experiments show that SlowFast-VGen outperforms baselines across various metrics for action-driven video generation, achieving an FVD score of 514 compared to 782, and maintaining consistency in longer videos, with an average of 0.37 scene cuts versus 0.89. The slow-fast learning loop algorithm significantly enhances performances on long-horizon planning tasks as well. Project Website: https://slowfast-vgen.github.io
Related papers
- SlowFast-LLaVA: A Strong Training-Free Baseline for Video Large Language Models [51.712700398020075]
We propose a training-free video large language model (LLM) that can jointly capture detailed spatial semantics and long-range temporal context.
This is realized by using a two-stream SlowFast design of inputs for Video LLMs to aggregate features from sampled frames in an effective way.
Experimental results show that SF-LLaVA outperforms existing training-free methods on a wide range of video tasks.
arXiv Detail & Related papers (2024-07-22T17:58:04Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders
Beyond 16 Frames [54.90226700939778]
We build on the common paradigm of transferring large-scale, image--text models to video via shallow temporal fusion.
We expose two limitations to the approach: (1) decreased spatial capabilities, likely due to poor video--language alignment in standard video datasets, and (2) higher memory consumption, bottlenecking the number of frames that can be processed.
arXiv Detail & Related papers (2023-12-12T16:10:19Z) - Just a Glimpse: Rethinking Temporal Information for Video Continual
Learning [58.7097258722291]
We propose a novel replay mechanism for effective video continual learning based on individual/single frames.
Under extreme memory constraints, video diversity plays a more significant role than temporal information.
Our method achieves state-of-the-art performance, outperforming the previous state-of-the-art by up to 21.49%.
arXiv Detail & Related papers (2023-05-28T19:14:25Z) - Long-Form Video-Language Pre-Training with Multimodal Temporal
Contrastive Learning [39.80936685227549]
Large-scale video-language pre-training has shown significant improvement in video-language understanding tasks.
We introduce a Long-Form VIdeo-LAnguage pre-training model (VILA) and train it on a large-scale long-form video and paragraph dataset.
We fine-tune the model on seven downstream long-form video-language understanding tasks, achieve new state-of-the-art performances.
arXiv Detail & Related papers (2022-10-12T09:08:27Z) - Frame-wise Action Representations for Long Videos via Sequence
Contrastive Learning [44.412145665354736]
We introduce a novel contrastive action representation learning framework to learn frame-wise action representations.
Inspired by the recent progress of self-supervised learning, we present a novel sequence contrastive loss (SCL) applied on two correlated views.
Our approach also shows outstanding performance on video alignment and fine-grained frame retrieval tasks.
arXiv Detail & Related papers (2022-03-28T17:59:54Z) - Beyond Short Clips: End-to-End Video-Level Learning with Collaborative
Memories [56.91664227337115]
We introduce a collaborative memory mechanism that encodes information across multiple sampled clips of a video at each training iteration.
This enables the learning of long-range dependencies beyond a single clip.
Our proposed framework is end-to-end trainable and significantly improves the accuracy of video classification at a negligible computational overhead.
arXiv Detail & Related papers (2021-04-02T18:59:09Z) - PGT: A Progressive Method for Training Models on Long Videos [45.935259079953255]
Main-stream method is to split a raw video into clips, leading to incomplete temporal information flow.
Inspired by natural language processing techniques dealing with long sentences, we propose to treat videos as serial fragments satisfying Markov property.
We empirically demonstrate that it yields significant performance improvements on different models and datasets.
arXiv Detail & Related papers (2021-03-21T06:15:20Z) - RSPNet: Relative Speed Perception for Unsupervised Video Representation
Learning [100.76672109782815]
We study unsupervised video representation learning that seeks to learn both motion and appearance features from unlabeled video only.
It is difficult to construct a suitable self-supervised task to well model both motion and appearance features.
We propose a new way to perceive the playback speed and exploit the relative speed between two video clips as labels.
arXiv Detail & Related papers (2020-10-27T16:42:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.