How Do Flow Matching Models Memorize and Generalize in Sample Data Subspaces?
- URL: http://arxiv.org/abs/2410.23594v1
- Date: Thu, 31 Oct 2024 03:08:07 GMT
- Title: How Do Flow Matching Models Memorize and Generalize in Sample Data Subspaces?
- Authors: Weiguo Gao, Ming Li,
- Abstract summary: Real-world data is often assumed to lie within a low-dimensional structure embedded in high-dimensional space.
In practical settings, we observe only a finite set of samples, forming what we refer to as the sample data subspace.
A major challenge lies in whether generative models can reliably synthesize samples that stay within this subspace.
- Score: 10.315743300140966
- License:
- Abstract: Real-world data is often assumed to lie within a low-dimensional structure embedded in high-dimensional space. In practical settings, we observe only a finite set of samples, forming what we refer to as the sample data subspace. It serves an essential approximation supporting tasks such as dimensionality reduction and generation. A major challenge lies in whether generative models can reliably synthesize samples that stay within this subspace rather than drifting away from the underlying structure. In this work, we provide theoretical insights into this challenge by leveraging Flow Matching models, which transform a simple prior into a complex target distribution via a learned velocity field. By treating the real data distribution as discrete, we derive analytical expressions for the optimal velocity field under a Gaussian prior, showing that generated samples memorize real data points and represent the sample data subspace exactly. To generalize to suboptimal scenarios, we introduce the Orthogonal Subspace Decomposition Network (OSDNet), which systematically decomposes the velocity field into subspace and off-subspace components. Our analysis shows that the off-subspace component decays, while the subspace component generalizes within the sample data subspace, ensuring generated samples preserve both proximity and diversity.
Related papers
- Deep Generative Sampling in the Dual Divergence Space: A Data-efficient & Interpretative Approach for Generative AI [29.13807697733638]
We build on the remarkable achievements in generative sampling of natural images.
We propose an innovative challenge, potentially overly ambitious, which involves generating samples that resemble images.
The statistical challenge lies in the small sample size, sometimes consisting of a few hundred subjects.
arXiv Detail & Related papers (2024-04-10T22:35:06Z) - On Deep Generative Models for Approximation and Estimation of
Distributions on Manifolds [38.311376714689]
Generative networks can generate high-dimensional complex data from a low-dimensional easy-to-sample distribution.
We take such low-dimensional data structures into consideration by assuming that data distributions are supported on a low-dimensional manifold.
We show that the Wasserstein-1 loss converges to zero at a fast rate depending on the intrinsic dimension instead of the ambient data dimension.
arXiv Detail & Related papers (2023-02-25T22:34:19Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.
This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
Normalizing Flows (NFs) are flexible explicit generative models that have been shown to accurately model complex real-world data distributions.
We propose an optimization objective that recovers the most likely point on the manifold given a sample from the perturbed distribution.
Finally, we focus on 3D point clouds for which we utilize the explicit nature of NFs, i.e. surface normals extracted from the gradient of the log-likelihood and the log-likelihood itself.
arXiv Detail & Related papers (2022-08-18T16:07:59Z) - Revisiting data augmentation for subspace clustering [21.737226432466496]
Subspace clustering is the classical problem of clustering a collection of data samples around several low-dimensional subspaces.
We argue that data distribution within each subspace plays a critical role in the success of self-expressive models.
We propose two subspace clustering frameworks for both unsupervised and semi-supervised settings.
arXiv Detail & Related papers (2022-07-20T08:13:08Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
In this letter we introduce an algorithm to infer the intrinsic dimension (ID) of datasets embedded in discrete spaces.
We demonstrate its accuracy on benchmark datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting.
This suggests that evolutive pressure acts on a low-dimensional manifold despite the high-dimensionality of sequences' space.
arXiv Detail & Related papers (2022-07-20T06:38:36Z) - Super-resolution GANs of randomly-seeded fields [68.8204255655161]
We propose a novel super-resolution generative adversarial network (GAN) framework to estimate field quantities from random sparse sensors.
The algorithm exploits random sampling to provide incomplete views of the high-resolution underlying distributions.
The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distributions measurements, and particle image velocimetry data.
arXiv Detail & Related papers (2022-02-23T18:57:53Z) - Intrinsic Dimension Estimation [92.87600241234344]
We introduce a new estimator of the intrinsic dimension and provide finite sample, non-asymptotic guarantees.
We then apply our techniques to get new sample complexity bounds for Generative Adversarial Networks (GANs) depending on the intrinsic dimension of the data.
arXiv Detail & Related papers (2021-06-08T00:05:39Z) - A Critique of Self-Expressive Deep Subspace Clustering [23.971512395191308]
Subspace clustering is an unsupervised clustering technique designed to cluster data that is supported on a union of linear subspaces.
We show that there are a number of potential flaws with this approach which have not been adequately addressed in prior work.
arXiv Detail & Related papers (2020-10-08T00:14:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.