Stereo-Talker: Audio-driven 3D Human Synthesis with Prior-Guided Mixture-of-Experts
- URL: http://arxiv.org/abs/2410.23836v1
- Date: Thu, 31 Oct 2024 11:32:33 GMT
- Title: Stereo-Talker: Audio-driven 3D Human Synthesis with Prior-Guided Mixture-of-Experts
- Authors: Xiang Deng, Youxin Pang, Xiaochen Zhao, Chao Xu, Lizhen Wang, Hongjiang Xiao, Shi Yan, Hongwen Zhang, Yebin Liu,
- Abstract summary: Stereo-Talker is a novel one-shot audio-driven human video synthesis system.
It generates 3D talking videos with precise lip synchronization, expressive body gestures, temporally consistent photo-realistic quality, and continuous viewpoint control.
- Score: 41.08576055846111
- License:
- Abstract: This paper introduces Stereo-Talker, a novel one-shot audio-driven human video synthesis system that generates 3D talking videos with precise lip synchronization, expressive body gestures, temporally consistent photo-realistic quality, and continuous viewpoint control. The process follows a two-stage approach. In the first stage, the system maps audio input to high-fidelity motion sequences, encompassing upper-body gestures and facial expressions. To enrich motion diversity and authenticity, large language model (LLM) priors are integrated with text-aligned semantic audio features, leveraging LLMs' cross-modal generalization power to enhance motion quality. In the second stage, we improve diffusion-based video generation models by incorporating a prior-guided Mixture-of-Experts (MoE) mechanism: a view-guided MoE focuses on view-specific attributes, while a mask-guided MoE enhances region-based rendering stability. Additionally, a mask prediction module is devised to derive human masks from motion data, enhancing the stability and accuracy of masks and enabling mask guiding during inference. We also introduce a comprehensive human video dataset with 2,203 identities, covering diverse body gestures and detailed annotations, facilitating broad generalization. The code, data, and pre-trained models will be released for research purposes.
Related papers
- KMTalk: Speech-Driven 3D Facial Animation with Key Motion Embedding [19.15471840100407]
We present a novel approach for synthesizing 3D facial motions from audio sequences using key motion embeddings.
Our method integrates linguistic and data-driven priors through two modules: the linguistic-based key motion acquisition and the cross-modal motion completion.
The latter extends key motions into a full sequence of 3D talking faces guided by audio features, improving temporal coherence and audio-visual consistency.
arXiv Detail & Related papers (2024-09-02T09:41:24Z) - Hallo: Hierarchical Audio-Driven Visual Synthesis for Portrait Image Animation [29.87407471246318]
This research delves into the complexities of synchronizing facial movements and creating visually appealing, temporally consistent animations.
Our innovative approach embraces the end-to-end diffusion paradigm and introduces a hierarchical audio-driven visual synthesis module.
The proposed hierarchical audio-driven visual synthesis offers adaptive control over expression and pose diversity, enabling more effective personalization tailored to different identities.
arXiv Detail & Related papers (2024-06-13T04:33:20Z) - EMAGE: Towards Unified Holistic Co-Speech Gesture Generation via Expressive Masked Audio Gesture Modeling [57.08286593059137]
We propose EMAGE, a framework to generate full-body human gestures from audio and masked gestures.
We first introduce BEAT2 (BEAT-SMPLX-FLAME), a new mesh-level holistic co-speech dataset.
Experiments demonstrate that EMAGE generates holistic gestures with state-of-the-art performance.
arXiv Detail & Related papers (2023-12-31T02:25:41Z) - SAiD: Speech-driven Blendshape Facial Animation with Diffusion [6.4271091365094515]
Speech-driven 3D facial animation is challenging due to the scarcity of large-scale visual-audio datasets.
We propose a speech-driven 3D facial animation with a diffusion model (SAiD), a lightweight Transformer-based U-Net with a cross-modality alignment bias between audio and visual to enhance lip synchronization.
arXiv Detail & Related papers (2023-12-25T04:40:32Z) - FaceTalk: Audio-Driven Motion Diffusion for Neural Parametric Head Models [85.16273912625022]
We introduce FaceTalk, a novel generative approach designed for synthesizing high-fidelity 3D motion sequences of talking human heads from audio signal.
To the best of our knowledge, this is the first work to propose a generative approach for realistic and high-quality motion synthesis of human heads.
arXiv Detail & Related papers (2023-12-13T19:01:07Z) - GSmoothFace: Generalized Smooth Talking Face Generation via Fine Grained
3D Face Guidance [83.43852715997596]
GSmoothFace is a novel two-stage generalized talking face generation model guided by a fine-grained 3d face model.
It can synthesize smooth lip dynamics while preserving the speaker's identity.
Both quantitative and qualitative experiments confirm the superiority of our method in terms of realism, lip synchronization, and visual quality.
arXiv Detail & Related papers (2023-12-12T16:00:55Z) - Cooperative Dual Attention for Audio-Visual Speech Enhancement with
Facial Cues [80.53407593586411]
We focus on leveraging facial cues beyond the lip region for robust Audio-Visual Speech Enhancement (AVSE)
We propose a Dual Attention Cooperative Framework, DualAVSE, to ignore speech-unrelated information, capture speech-related information with facial cues, and dynamically integrate it with the audio signal for AVSE.
arXiv Detail & Related papers (2023-11-24T04:30:31Z) - Pose-Controllable 3D Facial Animation Synthesis using Hierarchical
Audio-Vertex Attention [52.63080543011595]
A novel pose-controllable 3D facial animation synthesis method is proposed by utilizing hierarchical audio-vertex attention.
The proposed method can produce more realistic facial expressions and head posture movements.
arXiv Detail & Related papers (2023-02-24T09:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.