Neural Network Matrix Product Operator: A Multi-Dimensionally Integrable Machine Learning Potential
- URL: http://arxiv.org/abs/2410.23858v2
- Date: Fri, 01 Nov 2024 03:49:57 GMT
- Title: Neural Network Matrix Product Operator: A Multi-Dimensionally Integrable Machine Learning Potential
- Authors: Kentaro Hino, Yuki Kurashige,
- Abstract summary: A neural network-based machine learning potential energy surface (PES) expressed in a matrix product operator (NN-MPO) is proposed.
The MPO form enables efficient evaluation of high-dimensional integrals that arise in solving the time-dependent and time-independent Schr"odinger equation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A neural network-based machine learning potential energy surface (PES) expressed in a matrix product operator (NN-MPO) is proposed. The MPO form enables efficient evaluation of high-dimensional integrals that arise in solving the time-dependent and time-independent Schr\"odinger equation and effectively overcomes the so-called curse of dimensionality. This starkly contrasts with other neural network-based machine learning PES methods, such as multi-layer perceptrons (MLPs), where evaluating high-dimensional integrals is not straightforward due to the fully connected topology in their backbone architecture. Nevertheless, the NN-MPO retains the high representational capacity of neural networks. NN-MPO can achieve spectroscopic accuracy with a test mean absolute error (MAE) of 3.03 cm$^{-1}$ for a fully coupled six-dimensional ab initio PES, using only 625 training points distributed across a 0 to 17,000 cm$^{-1}$ energy range. Our Python implementation is available at https://github.com/KenHino/Pompon.
Related papers
- From expNN to sinNN: automatic generation of sum-of-products models for potential energy surfaces in internal coordinates using neural networks and sparse grid sampling [0.0]
This work aims to evaluate the practicality of a single-layer artificial neural network with sinusoidal activation functions for representing potential energy surfaces in sum-of-products form.
The fitting approach, named sinNN, is applied to modeling the PES of HONO, covering both the trans and cis isomers.
The sinNN PES model was able to reproduce available experimental fundamental vibrational transition energies with a root mean square error of about 17 cm-1.
arXiv Detail & Related papers (2025-04-30T07:31:32Z) - Scalable Mechanistic Neural Networks for Differential Equations and Machine Learning [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.
We reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.
Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Efficient SGD Neural Network Training via Sublinear Activated Neuron
Identification [22.361338848134025]
We present a fully connected two-layer neural network for shifted ReLU activation to enable activated neuron identification in sublinear time via geometric search.
We also prove that our algorithm can converge in $O(M2/epsilon2)$ time with network size quadratic in the coefficient norm upper bound $M$ and error term $epsilon$.
arXiv Detail & Related papers (2023-07-13T05:33:44Z) - Unlocking the potential of two-point cells for energy-efficient training
of deep nets [4.544752600181175]
We show how a transformative L5PC-driven deep neural network (DNN) can effectively process large amounts of heterogeneous real-world audio-visual (AV) data.
A novel highly-distributed parallel implementation on a Xilinx UltraScale+ MPSoC device estimates energy savings up to $245759 times 50000$ $mu$J.
In a supervised learning setup, the energy-saving can potentially reach up to 1250x less (per feedforward transmission) than the baseline model.
arXiv Detail & Related papers (2022-10-24T13:33:15Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
This paper proposes a theoretical and computational framework for training and robustness verification of implicit neural networks.
We introduce a related embedded network and show that the embedded network can be used to provide an $ell_infty$-norm box over-approximation of the reachable sets of the original network.
We apply our algorithms to train implicit neural networks on the MNIST dataset and compare the robustness of our models with the models trained via existing approaches in the literature.
arXiv Detail & Related papers (2022-08-08T03:13:24Z) - Sampling-free Inference for Ab-Initio Potential Energy Surface Networks [2.088583843514496]
A potential energy surface network (PESNet) has been proposed to reduce training time by solving the Schr"odinger equation for many geometries simultaneously.
Here, we address the inference shortcomings by proposing the Potential learning from ab-initio Networks (PlaNet) framework to simultaneously train a surrogate model that avoids expensive Monte-Carlo integration.
In this way, we can accurately model high-resolution multi-dimensional energy surfaces that previously would have been unobtainable via neural wave functions.
arXiv Detail & Related papers (2022-05-30T10:00:59Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
This paper applies learning to the two key sub-tasks of a MIP solver, generating a high-quality joint variable assignment, and bounding the gap in objective value between that assignment and an optimal one.
Our approach constructs two corresponding neural network-based components, Neural Diving and Neural Branching, to use in a base MIP solver such as SCIP.
We evaluate our approach on six diverse real-world datasets, including two Google production datasets and MIPLIB, by training separate neural networks on each.
arXiv Detail & Related papers (2020-12-23T09:33:11Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Training of Quantized Deep Neural Networks using a Magnetic Tunnel
Junction-Based Synapse [23.08163992580639]
Quantized neural networks (QNNs) are being actively researched as a solution for the computational complexity and memory intensity of deep neural networks.
We show how magnetic tunnel junction (MTJ) devices can be used to support QNN training.
We introduce a novel synapse circuit that uses the MTJ behavior to support the quantize update.
arXiv Detail & Related papers (2019-12-29T11:36:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.