AllClear: A Comprehensive Dataset and Benchmark for Cloud Removal in Satellite Imagery
- URL: http://arxiv.org/abs/2410.23891v1
- Date: Thu, 31 Oct 2024 12:52:52 GMT
- Title: AllClear: A Comprehensive Dataset and Benchmark for Cloud Removal in Satellite Imagery
- Authors: Hangyu Zhou, Chia-Hsiang Kao, Cheng Perng Phoo, Utkarsh Mall, Bharath Hariharan, Kavita Bala,
- Abstract summary: We introduce the largest public dataset -- $textitAllClear$ for cloud removal, featuring 23,742 globally distributed regions of interest.
This dataset aims to provide comprehensive coverage of the Earth's surface and promote better cloud removal results.
- Score: 38.538566901989526
- License:
- Abstract: Clouds in satellite imagery pose a significant challenge for downstream applications. A major challenge in current cloud removal research is the absence of a comprehensive benchmark and a sufficiently large and diverse training dataset. To address this problem, we introduce the largest public dataset -- $\textit{AllClear}$ for cloud removal, featuring 23,742 globally distributed regions of interest (ROIs) with diverse land-use patterns, comprising 4 million images in total. Each ROI includes complete temporal captures from the year 2022, with (1) multi-spectral optical imagery from Sentinel-2 and Landsat 8/9, (2) synthetic aperture radar (SAR) imagery from Sentinel-1, and (3) auxiliary remote sensing products such as cloud masks and land cover maps. We validate the effectiveness of our dataset by benchmarking performance, demonstrating the scaling law -- the PSNR rises from $28.47$ to $33.87$ with $30\times$ more data, and conducting ablation studies on the temporal length and the importance of individual modalities. This dataset aims to provide comprehensive coverage of the Earth's surface and promote better cloud removal results.
Related papers
- IDF-CR: Iterative Diffusion Process for Divide-and-Conquer Cloud Removal in Remote-sensing Images [55.40601468843028]
We present an iterative diffusion process for cloud removal (IDF-CR)
IDF-CR is divided into two-stage models that address pixel space and latent space.
In the latent space stage, the diffusion model transforms low-quality cloud removal into high-quality clean output.
arXiv Detail & Related papers (2024-03-18T15:23:48Z) - 1st Place Solution to MultiEarth 2023 Challenge on Multimodal SAR-to-EO
Image Translation [3.8424737607413153]
Multimodal Learning for Earth and Environment Workshop (MultiEarth 2023) aims to harness the substantial amount of remote sensing data gathered over extensive periods for the monitoring and analysis of Earth's ecosystems'health.
The subtask, Multimodal SAR-to-EO Image Translation, involves the use of robust SAR data, even under adverse weather and lighting conditions, transforming it into high-quality, clear, and visually appealing EO data.
In the final evaluation, the team 'CDRL' achieved an MAE of 0.07313, securing the top rank on the leaderboard.
arXiv Detail & Related papers (2023-06-22T01:32:30Z) - MM811 Project Report: Cloud Detection and Removal in Satellite Images [0.0]
We aim to address cloud removal from satellite images using AttentionGAN.
We compare our results by reproducing the results obtained using traditional GANs and auto-encoders.
The outcome of this project can be used to develop applications that require cloud-free satellite images.
arXiv Detail & Related papers (2022-12-21T21:14:35Z) - Toward Real-world Single Image Deraining: A New Benchmark and Beyond [79.5893880599847]
Single image deraining (SID) in real scenarios attracts increasing attention in recent years.
Previous real datasets suffer from low-resolution images, homogeneous rain streaks, limited background variation, and even misalignment of image pairs.
We establish a new high-quality dataset named RealRain-1k, consisting of $1,120$ high-resolution paired clean and rainy images with low- and high-density rain streaks, respectively.
arXiv Detail & Related papers (2022-06-11T12:26:59Z) - Exploring the Potential of SAR Data for Cloud Removal in Optical
Satellite Imagery [41.40522618945897]
We propose a novel global-local fusion based cloud removal (GLF-CR) algorithm to leverage the complementary information embedded in SAR images.
The proposed algorithm can yield high quality cloud-free images and performs favorably against state-of-the-art cloud removal algorithms.
arXiv Detail & Related papers (2022-06-06T18:53:19Z) - Sentinel-1 and Sentinel-2 Spatio-Temporal Data Fusion for Clouds Removal [51.9654625216266]
A novel method for clouds-corrupted optical image restoration has been presented and developed based on a joint data fusion paradigm.
It is worth highlighting that the Sentinel code and the dataset have been implemented from scratch and made available to interested research for further analysis and investigation.
arXiv Detail & Related papers (2021-06-23T08:15:01Z) - Seeing Through Clouds in Satellite Images [14.84582204034532]
This paper presents a neural-network-based solution to recover pixels occluded by clouds in satellite images.
We leverage radio frequency (RF) signals in the ultra/super-high frequency band that penetrate clouds to help reconstruct the occluded regions in multispectral images.
arXiv Detail & Related papers (2021-06-15T20:01:27Z) - Object Detection in Aerial Images: A Large-Scale Benchmark and
Challenges [124.48654341780431]
We present a large-scale dataset of Object deTection in Aerial images (DOTA) and comprehensive baselines for ODAI.
The proposed DOTA dataset contains 1,793,658 object instances of 18 categories of oriented-bounding-box annotations collected from 11,268 aerial images.
We build baselines covering 10 state-of-the-art algorithms with over 70 configurations, where the speed and accuracy performances of each model have been evaluated.
arXiv Detail & Related papers (2021-02-24T11:20:55Z) - Multi-Sensor Data Fusion for Cloud Removal in Global and All-Season
Sentinel-2 Imagery [15.459106705735376]
The majority of optical observations acquired via spaceborne earth imagery are affected by clouds.
We target the challenge of generalization by curating a large novel data set for training new cloud removal approaches.
Based on the observation that cloud coverage varies widely between clear skies and absolute coverage, we propose a novel model that can deal with either extremes.
arXiv Detail & Related papers (2020-09-16T13:40:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.