Transformer-based Model Predictive Control: Trajectory Optimization via Sequence Modeling
- URL: http://arxiv.org/abs/2410.23916v1
- Date: Thu, 31 Oct 2024 13:23:10 GMT
- Title: Transformer-based Model Predictive Control: Trajectory Optimization via Sequence Modeling
- Authors: Davide Celestini, Daniele Gammelli, Tommaso Guffanti, Simone D'Amico, Elisa Capello, Marco Pavone,
- Abstract summary: We present a unified framework combine the main strengths of optimization-based methods for learning.
Our approach entails embedding high-capacity, transformer-based neural network models within optimization process.
Compared to purely optimization-based approaches, results show that our approach can improve performance by up to 75%.
- Score: 16.112708478263745
- License:
- Abstract: Model predictive control (MPC) has established itself as the primary methodology for constrained control, enabling general-purpose robot autonomy in diverse real-world scenarios. However, for most problems of interest, MPC relies on the recursive solution of highly non-convex trajectory optimization problems, leading to high computational complexity and strong dependency on initialization. In this work, we present a unified framework to combine the main strengths of optimization-based and learning-based methods for MPC. Our approach entails embedding high-capacity, transformer-based neural network models within the optimization process for trajectory generation, whereby the transformer provides a near-optimal initial guess, or target plan, to a non-convex optimization problem. Our experiments, performed in simulation and the real world onboard a free flyer platform, demonstrate the capabilities of our framework to improve MPC convergence and runtime. Compared to purely optimization-based approaches, results show that our approach can improve trajectory generation performance by up to 75%, reduce the number of solver iterations by up to 45%, and improve overall MPC runtime by 7x without loss in performance.
Related papers
- Towards Robust Spacecraft Trajectory Optimization via Transformers [17.073280827888226]
Future multi-spacecraft missions require robust autonomous optimization capabilities to ensure safe and efficient rendezvous operations.
To mitigate this burden, introduced generative Transformer model to provide robust optimal initial guesses.
This work extends capabilities of ART to address robustconstrained optimal control problems.
arXiv Detail & Related papers (2024-10-08T00:58:42Z) - SOMTP: Self-Supervised Learning-Based Optimizer for MPC-Based Safe Trajectory Planning Problems in Robotics [13.129654942805846]
Model Predictive Control (MP)-based trajectory planning has been widely used in, and Control Barrier (CBF) can improve its constraints.
In this paper, we propose a self-supervised learning algorithm for CBF-MPC trajectory planning.
arXiv Detail & Related papers (2024-05-15T09:38:52Z) - Controllable Prompt Tuning For Balancing Group Distributional Robustness [53.336515056479705]
We introduce an optimization scheme to achieve good performance across groups and find a good solution for all without severely sacrificing performance on any of them.
We propose Controllable Prompt Tuning (CPT), which couples our approach with prompt-tuning techniques.
On spurious correlation benchmarks, our procedures achieve state-of-the-art results across both transformer and non-transformer architectures, as well as unimodal and multimodal data.
arXiv Detail & Related papers (2024-03-05T06:23:55Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
We introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR)
CFSR inherits the advantages of both convolution-based and transformer-based approaches.
Experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance.
arXiv Detail & Related papers (2024-01-11T03:08:00Z) - Efficient Inverse Design Optimization through Multi-fidelity Simulations, Machine Learning, and Search Space Reduction Strategies [0.8646443773218541]
This paper introduces a methodology designed to augment the inverse design optimization process in scenarios constrained by limited compute.
The proposed methodology is analyzed on two distinct engineering inverse design problems: airfoil inverse design and the scalar field reconstruction problem.
Notably, this method is adaptable across any inverse design application, facilitating a synergy between a representative low-fidelity ML model, and high-fidelity simulation, and can be seamlessly applied across any variety of population-based optimization algorithms.
arXiv Detail & Related papers (2023-12-06T18:20:46Z) - Deep Model Predictive Optimization [21.22047409735362]
A major challenge in robotics is to design robust policies which enable complex and agile behaviors in the real world.
We propose Deep Model Predictive Optimization (DMPO), which learns the inner-loop of an MPC optimization algorithm directly via experience.
DMPO can outperform the best MPC algorithm by up to 27% with fewer samples and an end-to-end policy trained with MFRL by 19%.
arXiv Detail & Related papers (2023-10-06T21:11:52Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Multi-Agent Deep Reinforcement Learning in Vehicular OCC [14.685237010856953]
We introduce a spectral efficiency optimization approach in vehicular OCC.
We model the optimization problem as a Markov decision process (MDP) to enable the use of solutions that can be applied online.
We verify the performance of our proposed scheme through extensive simulations and compare it with various variants of our approach and a random method.
arXiv Detail & Related papers (2022-05-05T14:25:54Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.