Assessing the Impact of Packing on Machine Learning-Based Malware Detection and Classification Systems
- URL: http://arxiv.org/abs/2410.24017v1
- Date: Thu, 31 Oct 2024 15:19:33 GMT
- Title: Assessing the Impact of Packing on Machine Learning-Based Malware Detection and Classification Systems
- Authors: Daniel Gibert, Nikolaos Totosis, Constantinos Patsakis, Giulio Zizzo, Quan Le,
- Abstract summary: The proliferation of malware presents a significant challenge to static analysis and signature-based malware detection techniques.
The application of packing to the original executable code renders extracting meaningful features and signatures challenging.
This work investigates the impact of packing on the performance of static machine learning-based models used for malware detection and classification.
- Score: 6.495333199859017
- License:
- Abstract: The proliferation of malware, particularly through the use of packing, presents a significant challenge to static analysis and signature-based malware detection techniques. The application of packing to the original executable code renders extracting meaningful features and signatures challenging. To deal with the increasing amount of malware in the wild, researchers and anti-malware companies started harnessing machine learning capabilities with very promising results. However, little is known about the effects of packing on static machine learning-based malware detection and classification systems. This work addresses this gap by investigating the impact of packing on the performance of static machine learning-based models used for malware detection and classification, with a particular focus on those using visualisation techniques. To this end, we present a comprehensive analysis of various packing techniques and their effects on the performance of machine learning-based detectors and classifiers. Our findings highlight the limitations of current static detection and classification systems and underscore the need to be proactive to effectively counteract the evolving tactics of malware authors.
Related papers
- Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection [0.5475886285082937]
This study conducts a thorough examination of malware detection using machine learning techniques.
The aim is to advance cybersecurity capabilities by identifying and mitigating threats more effectively.
arXiv Detail & Related papers (2024-03-04T17:22:43Z) - EMBERSim: A Large-Scale Databank for Boosting Similarity Search in
Malware Analysis [48.5877840394508]
In recent years there has been a shift from quantifications-based malware detection towards machine learning.
We propose to address the deficiencies in the space of similarity research on binary files, starting from EMBER.
We enhance EMBER with similarity information as well as malware class tags, to enable further research in the similarity space.
arXiv Detail & Related papers (2023-10-03T06:58:45Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
Hardware-based malware detection approaches leverage hardware performance counters and machine learning prowess.
We meticulously analyze the approach, unraveling the most common methods, algorithms, tools, and datasets that shape its contours.
The discussion extends to crafting mixed hardware and software approaches for collaborative efficacy, essential enhancements in hardware monitoring units, and a better understanding of the correlation between hardware events and malware applications.
arXiv Detail & Related papers (2023-03-22T13:00:41Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
We analyze 10 influential research works on Android malware detection using a common evaluation framework.
We identify five factors that, if not taken into account when creating datasets and designing detectors, significantly affect the trained ML models.
We conclude that the studied ML-based detectors have been evaluated optimistically, which justifies the good published results.
arXiv Detail & Related papers (2022-05-25T08:28:08Z) - Deep Image: A precious image based deep learning method for online
malware detection in IoT Environment [12.558284943901613]
In this paper, a different view of malware analysis is considered and the risk level of each sample feature is computed.
In addition to the usual machine learning criteria namely accuracy and FPR, a proposed criterion based on the risk of samples has also been used for comparison.
The results show that the deep learning approach performed better in detecting malware.
arXiv Detail & Related papers (2022-04-04T17:56:55Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - ML-based IoT Malware Detection Under Adversarial Settings: A Systematic
Evaluation [9.143713488498513]
This work systematically examines the state-of-the-art malware detection approaches, that utilize various representation and learning techniques.
We show that software mutations with functionality-preserving operations, such as stripping and padding, significantly deteriorate the accuracy of such detectors.
arXiv Detail & Related papers (2021-08-30T16:54:07Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z) - Interpreting Machine Learning Malware Detectors Which Leverage N-gram
Analysis [2.6397379133308214]
cybersecurity analysts always prefer solutions that are as interpretable and understandable as rule-based or signature-based detection.
The objective of this paper is to evaluate the current state-of-the-art ML models interpretability techniques when applied to ML-based malware detectors.
arXiv Detail & Related papers (2020-01-27T19:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.