Clustering to Minimize Cluster-Aware Norm Objectives
- URL: http://arxiv.org/abs/2410.24104v1
- Date: Thu, 31 Oct 2024 16:33:40 GMT
- Title: Clustering to Minimize Cluster-Aware Norm Objectives
- Authors: Martin G. Herold, Evangelos Kipouridis, Joachim Spoerhase,
- Abstract summary: We seek to partition a given set $P$ of data points into $k$ clusters by finding a set $X$ of $k$ centers.
The cost of a cluster, represented by a center $xin X$, is a monotone, symmetric norm $f$ (inner norm) of the vector of distances of points assigned to $x$.
The goal is to minimize a norm $g$ (outer norm) of the vector of cluster costs.
- Score: 0.3481985817302898
- License:
- Abstract: We initiate the study of the following general clustering problem. We seek to partition a given set $P$ of data points into $k$ clusters by finding a set $X$ of $k$ centers and assigning each data point to one of the centers. The cost of a cluster, represented by a center $x\in X$, is a monotone, symmetric norm $f$ (inner norm) of the vector of distances of points assigned to $x$. The goal is to minimize a norm $g$ (outer norm) of the vector of cluster costs. This problem, which we call $(f,g)$-Clustering, generalizes many fundamental clustering problems such as $k$-Center, $k$-Median , Min-Sum of Radii, and Min-Load $k$-Clustering . A recent line of research (Chakrabarty, Swamy [STOC'19]) studies norm objectives that are oblivious to the cluster structure such as $k$-Median and $k$-Center. In contrast, our problem models cluster-aware objectives including Min-Sum of Radii and Min-Load $k$-Clustering. Our main results are as follows. First, we design a constant-factor approximation algorithm for $(\textsf{top}_\ell,\mathcal{L}_1)$-Clustering where the inner norm ($\textsf{top}_\ell$) sums over the $\ell$ largest distances. Second, we design a constant-factor approximation\ for $(\mathcal{L}_\infty,\textsf{Ord})$-Clustering where the outer norm is a convex combination of $\textsf{top}_\ell$ norms (ordered weighted norm).
Related papers
- A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
We present a scalable algorithm for the individually fair ($p$, $k$)-clustering problem introduced by Jung et al. and Mahabadi et al.
A clustering is then called individually fair if it has centers within distance $delta(x)$ of $x$ for each $xin P$.
We show empirically that not only is our algorithm much faster than prior work, but it also produces lower-cost solutions.
arXiv Detail & Related papers (2024-02-09T19:01:48Z) - A Unified Framework for Center-based Clustering of Distributed Data [46.86543102499174]
We develop a family of distributed center-based clustering algorithms that work over networks of users.
Our framework allows for a broad class of smooth convex loss functions, including popular clustering losses like $K$-means and Huber loss.
For the special case of Bregman losses, we show that our fixed points converge to the set of Lloyd points.
arXiv Detail & Related papers (2024-02-02T10:44:42Z) - On Generalization Bounds for Projective Clustering [3.4490841399255823]
Given a set of points, clustering consists of finding a partition of a point set into $k$ clusters such that the center to which a point is assigned is as close as possible.
For center-based objectives, we show a convergence rate of $tildeOleft(sqrtfrackj2nright)$.
For subspace clustering with $j$-dimensional subspaces, we show a convergence rate of $tildeOleft(sqrtfrackj2nright)$.
arXiv Detail & Related papers (2023-10-13T14:15:54Z) - Do you know what q-means? [50.045011844765185]
Clustering is one of the most important tools for analysis of large datasets.
We present an improved version of the "$q$-means" algorithm for clustering.
We also present a "dequantized" algorithm for $varepsilon which runs in $Obig(frack2varepsilon2(sqrtkd + log(Nd))big.
arXiv Detail & Related papers (2023-08-18T17:52:12Z) - Approximation Algorithms for Fair Range Clustering [14.380145034918158]
This paper studies the fair range clustering problem in which the data points are from different demographic groups.
The goal is to pick $k$ centers with the minimum clustering cost such that each group is at least minimally represented in the centers set.
In particular, the fair range $ell_p$-clustering captures fair range $k$-center, $k$-median and $k$-means as its special cases.
arXiv Detail & Related papers (2023-06-11T21:18:40Z) - Approximating Fair Clustering with Cascaded Norm Objectives [10.69111036810888]
We find a clustering which minimizes the $ell_q$-norm of the vector over $W$ of the $ell_p$-norms of the weighted distances of points in $P$ from the centers.
This generalizes various clustering problems, including Socially Fair $k$-Median and $k$-Means.
arXiv Detail & Related papers (2021-11-08T20:18:10Z) - Nearly-Tight and Oblivious Algorithms for Explainable Clustering [8.071379672971542]
We study the problem of explainable clustering in the setting first formalized by Moshkovitz, Dasgupta, Rashtchian, and Frost (ICML 2020)
A $k$-clustering is said to be explainable if it is given by a decision tree where each internal node data points with a threshold cut in a single dimension (feature)
We give an algorithm that outputs an explainable clustering that loses at most a factor of $O(log2 k)$ compared to an optimal (not necessarily explainable) clustering for the $k$-medians objective.
arXiv Detail & Related papers (2021-06-30T15:49:41Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - Fuzzy Clustering with Similarity Queries [56.96625809888241]
The fuzzy or soft objective is a popular generalization of the well-known $k$-means problem.
We show that by making few queries, the problem becomes easier to solve.
arXiv Detail & Related papers (2021-06-04T02:32:26Z) - Sum-of-norms clustering does not separate nearby balls [49.1574468325115]
We show a continuous version of sum-of-norms clustering, where the dataset is replaced by a general measure.
We state and prove a local-global characterization of the clustering that seems to be new even in the case of discrete datapoints.
arXiv Detail & Related papers (2021-04-28T13:35:17Z) - K-expectiles clustering [0.0]
We propose a novel partitioning clustering algorithm based on expectiles.
We suggest two schemes: fixed $tau$ clustering, and adaptive $tau$ clustering.
arXiv Detail & Related papers (2021-03-16T21:14:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.