Learning local discrete features in explainable-by-design convolutional neural networks
- URL: http://arxiv.org/abs/2411.00139v1
- Date: Thu, 31 Oct 2024 18:39:41 GMT
- Title: Learning local discrete features in explainable-by-design convolutional neural networks
- Authors: Pantelis I. Kaplanoglou, Konstantinos Diamantaras,
- Abstract summary: We introduce an explainable-by-design convolutional neural network (CNN) based on the lateral inhibition mechanism.
The model consists of the predictor, that is a high-accuracy CNN with residual or dense skip connections.
By collecting observations and directly calculating probabilities, we can explain causal relationships between motifs of adjacent levels.
- Score: 0.0
- License:
- Abstract: Our proposed framework attempts to break the trade-off between performance and explainability by introducing an explainable-by-design convolutional neural network (CNN) based on the lateral inhibition mechanism. The ExplaiNet model consists of the predictor, that is a high-accuracy CNN with residual or dense skip connections, and the explainer probabilistic graph that expresses the spatial interactions of the network neurons. The value on each graph node is a local discrete feature (LDF) vector, a patch descriptor that represents the indices of antagonistic neurons ordered by the strength of their activations, which are learned with gradient descent. Using LDFs as sequences we can increase the conciseness of explanations by repurposing EXTREME, an EM-based sequence motif discovery method that is typically used in molecular biology. Having a discrete feature motif matrix for each one of intermediate image representations, instead of a continuous activation tensor, allows us to leverage the inherent explainability of Bayesian networks. By collecting observations and directly calculating probabilities, we can explain causal relationships between motifs of adjacent levels and attribute the model's output to global motifs. Moreover, experiments on various tiny image benchmark datasets confirm that our predictor ensures the same level of performance as the baseline architecture for a given count of parameters and/or layers. Our novel method shows promise to exceed this performance while providing an additional stream of explanations. In the solved MNIST classification task, it reaches a comparable to the state-of-the-art performance for single models, using standard training setup and 0.75 million parameters.
Related papers
- Interpretable A-posteriori Error Indication for Graph Neural Network Surrogate Models [0.0]
This work introduces an interpretability enhancement procedure for graph neural networks (GNNs)
The end result is an interpretable GNN model that isolates regions in physical space, corresponding to sub-graphs, that are intrinsically linked to the forecasting task.
The interpretable GNNs can also be used to identify, during inference, graph nodes that correspond to a majority of the anticipated forecasting error.
arXiv Detail & Related papers (2023-11-13T18:37:07Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
We investigate NTKs and alignment in the context of graph neural networks (GNNs)
Our results establish the theoretical guarantees on the optimality of the alignment for a two-layer GNN.
These guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data.
arXiv Detail & Related papers (2023-10-16T19:54:21Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Modeling Implicit Bias with Fuzzy Cognitive Maps [0.0]
This paper presents a Fuzzy Cognitive Map model to quantify implicit bias in structured datasets.
We introduce a new reasoning mechanism equipped with a normalization-like transfer function that prevents neurons from saturating.
arXiv Detail & Related papers (2021-12-23T17:04:12Z) - Inference Graphs for CNN Interpretation [12.765543440576144]
Convolutional neural networks (CNNs) have achieved superior accuracy in many visual related tasks.
We propose to model the network hidden layers activity using probabilistic models.
We show that such graphs are useful for understanding the general inference process of a class, as well as explaining decisions the network makes regarding specific images.
arXiv Detail & Related papers (2021-10-20T13:56:09Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Scalable Partial Explainability in Neural Networks via Flexible
Activation Functions [13.71739091287644]
High dimensional features and decisions given by deep neural networks (NN) require new algorithms and methods to expose its mechanisms.
Current state-of-the-art NN interpretation methods focus more on the direct relationship between NN outputs and inputs rather than the NN structure and operations itself.
In this paper, we achieve partially explainable learning model by symbolically explaining the role of activation functions (AF) under a scalable topology.
arXiv Detail & Related papers (2020-06-10T20:30:15Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.