Schema Augmentation for Zero-Shot Domain Adaptation in Dialogue State Tracking
- URL: http://arxiv.org/abs/2411.00150v1
- Date: Thu, 31 Oct 2024 18:57:59 GMT
- Title: Schema Augmentation for Zero-Shot Domain Adaptation in Dialogue State Tracking
- Authors: Christopher Richardson, Roshan Sharma, Neeraj Gaur, Parisa Haghani, Anirudh Sundar, Bhuvana Ramabhadran,
- Abstract summary: Current large language model approaches for zero-shot domain adaptation rely on prompting to introduce knowledge pertaining to the target domains.
In this work, we devise a novel data augmentation approach, Augmentation, that improves the zero-shot domain adaptation of language models through fine-tuning.
Experiments on MultiWOZ and SpokenWOZ showed that the proposed approach resulted in a substantial improvement over the baseline.
- Score: 16.67185296899117
- License:
- Abstract: Zero-shot domain adaptation for dialogue state tracking (DST) remains a challenging problem in task-oriented dialogue (TOD) systems, where models must generalize to target domains unseen at training time. Current large language model approaches for zero-shot domain adaptation rely on prompting to introduce knowledge pertaining to the target domains. However, their efficacy strongly depends on prompt engineering, as well as the zero-shot ability of the underlying language model. In this work, we devise a novel data augmentation approach, Schema Augmentation, that improves the zero-shot domain adaptation of language models through fine-tuning. Schema Augmentation is a simple but effective technique that enhances generalization by introducing variations of slot names within the schema provided in the prompt. Experiments on MultiWOZ and SpokenWOZ showed that the proposed approach resulted in a substantial improvement over the baseline, in some experiments achieving over a twofold accuracy gain over unseen domains while maintaining equal or superior performance over all domains.
Related papers
- StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization [85.18995948334592]
Single domain generalization (single DG) aims at learning a robust model generalizable to unseen domains from only one training domain.
State-of-the-art approaches have mostly relied on data augmentations, such as adversarial perturbation and style enhancement, to synthesize new data.
We propose emphStyDeSty, which explicitly accounts for the alignment of the source and pseudo domains in the process of data augmentation.
arXiv Detail & Related papers (2024-06-01T02:41:34Z) - Unified Language-driven Zero-shot Domain Adaptation [55.64088594551629]
Unified Language-driven Zero-shot Domain Adaptation (ULDA) is a novel task setting.
It enables a single model to adapt to diverse target domains without explicit domain-ID knowledge.
arXiv Detail & Related papers (2024-04-10T16:44:11Z) - Role Prompting Guided Domain Adaptation with General Capability Preserve
for Large Language Models [55.51408151807268]
When tailored to specific domains, Large Language Models (LLMs) tend to experience catastrophic forgetting.
crafting a versatile model for multiple domains simultaneously often results in a decline in overall performance.
We present the RolE Prompting Guided Multi-Domain Adaptation (REGA) strategy.
arXiv Detail & Related papers (2024-03-05T08:22:41Z) - SwitchPrompt: Learning Domain-Specific Gated Soft Prompts for
Classification in Low-Resource Domains [14.096170976149521]
SwitchPrompt is a novel and lightweight prompting methodology for adaptation of language models trained on datasets from the general domain to diverse low-resource domains.
Our few-shot experiments on three text classification benchmarks demonstrate the efficacy of the general-domain pre-trained language models when used with SwitchPrompt.
They often even outperform their domain-specific counterparts trained with baseline state-of-the-art prompting methods by up to 10.7% performance increase in accuracy.
arXiv Detail & Related papers (2023-02-14T07:14:08Z) - Domain-Oriented Prefix-Tuning: Towards Efficient and Generalizable
Fine-tuning for Zero-Shot Dialogue Summarization [29.700113636257544]
We propose an efficient and generalizable Domain-Oriented Prefix-tuning model to alleviate domain entanglement.
We conduct zero-shot experiments and build domain adaptation benchmarks on two multi-domain dialogue summarization datasets.
arXiv Detail & Related papers (2022-04-09T02:28:22Z) - Unsupervised Domain Generalization for Person Re-identification: A
Domain-specific Adaptive Framework [50.88463458896428]
Domain generalization (DG) has attracted much attention in person re-identification (ReID) recently.
Existing methods usually need the source domains to be labeled, which could be a significant burden for practical ReID tasks.
We propose a simple and efficient domain-specific adaptive framework, and realize it with an adaptive normalization module.
arXiv Detail & Related papers (2021-11-30T02:35:51Z) - Context-Conditional Adaptation for Recognizing Unseen Classes in Unseen
Domains [48.17225008334873]
We propose a feature generative framework integrated with a COntext COnditional Adaptive (COCOA) Batch-Normalization.
The generated visual features better capture the underlying data distribution enabling us to generalize to unseen classes and domains at test-time.
We thoroughly evaluate and analyse our approach on established large-scale benchmark - DomainNet.
arXiv Detail & Related papers (2021-07-15T17:51:16Z) - Meta-Learning for Domain Generalization in Semantic Parsing [124.32975734073949]
We use a meta-learning framework which targets zero-shot domain for semantic parsing.
We apply a model-agnostic training algorithm that simulates zero-shot parsing virtual train and test sets from disjoint domains.
arXiv Detail & Related papers (2020-10-22T19:00:36Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
We propose a novel semantic for domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain.
Our semantic benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages.
Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies.
arXiv Detail & Related papers (2020-06-23T14:47:41Z) - Learning to adapt class-specific features across domains for semantic
segmentation [36.36210909649728]
In this thesis, we present a novel architecture, which learns to adapt features across domains by taking into account per class information.
We adopt the recently introduced StarGAN architecture as image translation backbone, since it is able to perform translations across multiple domains by means of a single generator network.
arXiv Detail & Related papers (2020-01-22T23:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.