Statistical Guarantees for Lifelong Reinforcement Learning using PAC-Bayesian Theory
- URL: http://arxiv.org/abs/2411.00401v1
- Date: Fri, 01 Nov 2024 07:01:28 GMT
- Title: Statistical Guarantees for Lifelong Reinforcement Learning using PAC-Bayesian Theory
- Authors: Zhi Zhang, Chris Chow, Yasi Zhang, Yanchao Sun, Haochen Zhang, Eric Hanchen Jiang, Han Liu, Furong Huang, Yuchen Cui, Oscar Hernan Madrid Padilla,
- Abstract summary: EPIC is a novel algorithm designed for lifelong reinforcement learning.
It learns a shared policy distribution, referred to as the textitworld policy, which enables rapid adaptation to new tasks.
Experiments on a variety of environments demonstrate that EPIC significantly outperforms existing methods in lifelong RL.
- Score: 37.02104729448692
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lifelong reinforcement learning (RL) has been developed as a paradigm for extending single-task RL to more realistic, dynamic settings. In lifelong RL, the "life" of an RL agent is modeled as a stream of tasks drawn from a task distribution. We propose EPIC (\underline{E}mpirical \underline{P}AC-Bayes that \underline{I}mproves \underline{C}ontinuously), a novel algorithm designed for lifelong RL using PAC-Bayes theory. EPIC learns a shared policy distribution, referred to as the \textit{world policy}, which enables rapid adaptation to new tasks while retaining valuable knowledge from previous experiences. Our theoretical analysis establishes a relationship between the algorithm's generalization performance and the number of prior tasks preserved in memory. We also derive the sample complexity of EPIC in terms of RL regret. Extensive experiments on a variety of environments demonstrate that EPIC significantly outperforms existing methods in lifelong RL, offering both theoretical guarantees and practical efficacy through the use of the world policy.
Related papers
- Causal-Paced Deep Reinforcement Learning [4.728991543521559]
Causal-Paced Deep Reinforcement Learning (CP-DRL) is a curriculum learning framework aware of SCM differences between tasks based on interaction data approximation.<n> Empirically, CP-DRL outperforms existing curriculum methods on the Point Mass benchmark.
arXiv Detail & Related papers (2025-06-24T20:15:01Z) - Can RLHF be More Efficient with Imperfect Reward Models? A Policy Coverage Perspective [31.956232187102465]
This paper studies how to transfer knowledge from imperfect reward models in online RLHF.<n>We propose novel transfer learning principles and a theoretical algorithm.<n>We develop a win-rate-based transfer policy selection strategy with improved computational efficiency.
arXiv Detail & Related papers (2025-02-26T16:03:06Z) - Behavioral Entropy-Guided Dataset Generation for Offline Reinforcement Learning [0.823630213763116]
We propose using Behavioral entropy as a principled exploration objective for generating datasets that provide diverse state space coverage.
We experimentally compare the performance of offline RL algorithms for a variety of downstream tasks on datasets generated using BE, R'enyi, and Shannon entropy-maximizing policies, as well as the SMM and RND algorithms.
offline RL algorithms trained on datasets collected using BE outperform those trained on datasets collected using Shannon entropy, SMM, and RND on all tasks considered, and on 80% of the tasks compared to datasets collected using R'enyi entropy.
arXiv Detail & Related papers (2025-02-06T15:20:32Z) - Sample Efficient Myopic Exploration Through Multitask Reinforcement
Learning with Diverse Tasks [53.44714413181162]
This paper shows that when an agent is trained on a sufficiently diverse set of tasks, a generic policy-sharing algorithm with myopic exploration design can be sample-efficient.
To the best of our knowledge, this is the first theoretical demonstration of the "exploration benefits" of MTRL.
arXiv Detail & Related papers (2024-03-03T22:57:44Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Is Inverse Reinforcement Learning Harder than Standard Reinforcement
Learning? A Theoretical Perspective [55.36819597141271]
Inverse Reinforcement Learning (IRL) -- the problem of learning reward functions from demonstrations of an emphexpert policy -- plays a critical role in developing intelligent systems.
This paper provides the first line of efficient IRL in vanilla offline and online settings using samples and runtime.
As an application, we show that the learned rewards can emphtransfer to another target MDP with suitable guarantees.
arXiv Detail & Related papers (2023-11-29T00:09:01Z) - RL$^3$: Boosting Meta Reinforcement Learning via RL inside RL$^2$ [12.111848705677142]
We propose RL$3$, a hybrid approach that incorporates action-values, learned per task through traditional RL, in the inputs to meta-RL.
We show that RL$3$ earns greater cumulative reward in the long term, compared to RL$2$, while maintaining data-efficiency in the short term, and generalizes better to out-of-distribution tasks.
arXiv Detail & Related papers (2023-06-28T04:16:16Z) - PEAR: Primitive enabled Adaptive Relabeling for boosting Hierarchical Reinforcement Learning [25.84621883831624]
Hierarchical reinforcement learning has the potential to solve complex long horizon tasks using temporal abstraction and increased exploration.
We present primitive enabled adaptive relabeling (PEAR)
We first perform adaptive relabeling on a few expert demonstrations to generate efficient subgoal supervision.
We then jointly optimize HRL agents by employing reinforcement learning (RL) and imitation learning (IL)
arXiv Detail & Related papers (2023-06-10T09:41:30Z) - Supplementing Gradient-Based Reinforcement Learning with Simple
Evolutionary Ideas [4.873362301533824]
We present a simple, sample-efficient algorithm for introducing large but directed learning steps in reinforcement learning (RL)
The methodology uses a population of RL agents training with a common experience buffer, with occasional crossovers and mutations of the agents in order to search efficiently through the policy space.
arXiv Detail & Related papers (2023-05-10T09:46:53Z) - Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
From Theory to Practice [54.03076395748459]
A central question in the meta-learning literature is how to regularize to ensure generalization to unseen tasks.
We present a generalization bound for meta-learning, which was first derived by Rothfuss et al.
We provide a theoretical analysis and empirical case study under which conditions and to what extent these guarantees for meta-learning improve upon PAC-Bayesian per-task learning bounds.
arXiv Detail & Related papers (2022-11-14T08:51:04Z) - Flexible Attention-Based Multi-Policy Fusion for Efficient Deep
Reinforcement Learning [78.31888150539258]
Reinforcement learning (RL) agents have long sought to approach the efficiency of human learning.
Prior studies in RL have incorporated external knowledge policies to help agents improve sample efficiency.
We present Knowledge-Grounded RL (KGRL), an RL paradigm fusing multiple knowledge policies and aiming for human-like efficiency and flexibility.
arXiv Detail & Related papers (2022-10-07T17:56:57Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Towards Deployment-Efficient Reinforcement Learning: Lower Bound and
Optimality [141.89413461337324]
Deployment efficiency is an important criterion for many real-world applications of reinforcement learning (RL)
We propose a theoretical formulation for deployment-efficient RL (DE-RL) from an "optimization with constraints" perspective.
arXiv Detail & Related papers (2022-02-14T01:31:46Z) - Continuous Coordination As a Realistic Scenario for Lifelong Learning [6.044372319762058]
We introduce a multi-agent lifelong learning testbed that supports both zero-shot and few-shot settings.
We evaluate several recent MARL methods, and benchmark state-of-the-art LLL algorithms in limited memory and computation.
We empirically show that the agents trained in our setup are able to coordinate well with unseen agents, without any additional assumptions made by previous works.
arXiv Detail & Related papers (2021-03-04T18:44:03Z) - FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
Metric Learning and Behavior Regularization [10.243908145832394]
We study the offline meta-reinforcement learning (OMRL) problem, a paradigm which enables reinforcement learning (RL) algorithms to quickly adapt to unseen tasks.
This problem is still not fully understood, for which two major challenges need to be addressed.
We provide analysis and insight showing that some simple design choices can yield substantial improvements over recent approaches.
arXiv Detail & Related papers (2020-10-02T17:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.