Fast Adaptation with Kernel and Gradient based Meta Leaning
- URL: http://arxiv.org/abs/2411.00404v1
- Date: Fri, 01 Nov 2024 07:05:03 GMT
- Title: Fast Adaptation with Kernel and Gradient based Meta Leaning
- Authors: JuneYoung Park, MinJae Kang,
- Abstract summary: We propose two algorithms to improve both the inner and outer loops of Model A Meta Learning (MAML)
Our first algorithm redefines the optimization problem in the function space to update the model using closed-form solutions.
In the outer loop, the second algorithm adjusts the learning of the meta-learner by assigning weights to the losses from each task of the inner loop.
- Score: 4.763682200721131
- License:
- Abstract: Model Agnostic Meta Learning or MAML has become the standard for few-shot learning as a meta-learning problem. MAML is simple and can be applied to any model, as its name suggests. However, it often suffers from instability and computational inefficiency during both training and inference times. In this paper, we propose two algorithms to improve both the inner and outer loops of MAML, then pose an important question about what 'meta' learning truly is. Our first algorithm redefines the optimization problem in the function space to update the model using closed-form solutions instead of optimizing parameters through multiple gradient steps in the inner loop. In the outer loop, the second algorithm adjusts the learning of the meta-learner by assigning weights to the losses from each task of the inner loop. This method optimizes convergence during both the training and inference stages of MAML. In conclusion, our algorithms offer a new perspective on meta-learning and make significant discoveries in both theory and experiments. This research suggests a more efficient approach to few-shot learning and fast task adaptation compared to existing methods. Furthermore, it lays the foundation for establishing a new paradigm in meta-learning.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Faster Optimization-Based Meta-Learning Adaptation Phase [0.0]
We introduce Lambda patterns by which we restrict which weight are updated in the network during the adaptation phase.
The experiments conducted have shown that it is possible to significantly improve the MAML method in the following areas.
arXiv Detail & Related papers (2022-06-13T06:57:17Z) - Does MAML Only Work via Feature Re-use? A Data Centric Perspective [19.556093984142418]
We provide empirical results that shed some light on how meta-learned MAML representations function.
We show that it is possible to define a family of synthetic benchmarks that result in a low degree of feature re-use.
We conjecture the core challenge of re-thinking meta-learning is in the design of few-shot learning data sets and benchmarks.
arXiv Detail & Related papers (2021-12-24T20:18:38Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
Model-agnostic meta-learning (MAML) has become a popular research area.
Existing MAML algorithms rely on the episode' idea by sampling a few tasks and data points to update the meta-model at each iteration.
This paper proposes memory-based algorithms for MAML that converge with vanishing error.
arXiv Detail & Related papers (2021-06-09T08:47:58Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
We propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK)
Within this paradigm, we introduce two meta-learning algorithms, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework.
We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory.
arXiv Detail & Related papers (2021-02-07T20:53:23Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z) - BOML: A Modularized Bilevel Optimization Library in Python for Meta
Learning [52.90643948602659]
BOML is a modularized optimization library that unifies several meta-learning algorithms into a common bilevel optimization framework.
It provides a hierarchical optimization pipeline together with a variety of iteration modules, which can be used to solve the mainstream categories of meta-learning methods.
arXiv Detail & Related papers (2020-09-28T14:21:55Z) - Guarantees for Tuning the Step Size using a Learning-to-Learn Approach [18.838453594698166]
We give meta-optimization guarantees for the learning-to-learn approach on a simple problem of tuning the step size for quadratic loss.
Although there is a way to design the meta-objective so that the meta-gradient remains bounded, computing the meta-gradient directly using backpropagation leads to numerical issues.
We also characterize when it is necessary to compute the meta-objective on a separate validation set to ensure the performance of the learned.
arXiv Detail & Related papers (2020-06-30T02:59:35Z) - Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning [63.64636047748605]
We develop a new theoretical framework to provide convergence guarantee for the general multi-step MAML algorithm.
In particular, our results suggest that an inner-stage step needs to be chosen inversely proportional to $N$ of inner-stage steps in order for $N$ MAML to have guaranteed convergence.
arXiv Detail & Related papers (2020-02-18T19:17:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.