Black-Box Forgetting
- URL: http://arxiv.org/abs/2411.00409v1
- Date: Fri, 01 Nov 2024 07:10:40 GMT
- Title: Black-Box Forgetting
- Authors: Yusuke Kuwana, Yuta Goto, Takashi Shibata, Go Irie,
- Abstract summary: We address a novel problem of selective forgetting for black-box models, named Black-Box Forgetting.
We propose Latent Context Sharing, which introduces common low-dimensional latent components among multiple tokens for the prompt.
Experiments on four standard benchmark datasets demonstrate the superiority of our method with reasonable baselines.
- Score: 8.84485103053191
- License:
- Abstract: Large-scale pre-trained models (PTMs) provide remarkable zero-shot classification capability covering a wide variety of object classes. However, practical applications do not always require the classification of all kinds of objects, and leaving the model capable of recognizing unnecessary classes not only degrades overall accuracy but also leads to operational disadvantages. To mitigate this issue, we explore the selective forgetting problem for PTMs, where the task is to make the model unable to recognize only the specified classes while maintaining accuracy for the rest. All the existing methods assume "white-box" settings, where model information such as architectures, parameters, and gradients is available for training. However, PTMs are often "black-box," where information on such models is unavailable for commercial reasons or social responsibilities. In this paper, we address a novel problem of selective forgetting for black-box models, named Black-Box Forgetting, and propose an approach to the problem. Given that information on the model is unavailable, we optimize the input prompt to decrease the accuracy of specified classes through derivative-free optimization. To avoid difficult high-dimensional optimization while ensuring high forgetting performance, we propose Latent Context Sharing, which introduces common low-dimensional latent components among multiple tokens for the prompt. Experiments on four standard benchmark datasets demonstrate the superiority of our method with reasonable baselines. The code is available at https://github.com/yusukekwn/Black-Box-Forgetting.
Related papers
- Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning [86.15009879251386]
We propose a novel architecture and method of explainable classification with Concept Bottleneck Models (CBM)
CBMs require an additional set of concepts to leverage.
We show a significant increase in accuracy using sparse hidden layers in CLIP-based bottleneck models.
arXiv Detail & Related papers (2024-04-04T09:43:43Z) - Black-Box Tuning of Vision-Language Models with Effective Gradient
Approximation [71.21346469382821]
We introduce collaborative black-box tuning (CBBT) for both textual prompt optimization and output feature adaptation for black-box models.
CBBT is extensively evaluated on eleven downstream benchmarks and achieves remarkable improvements compared to existing black-box VL adaptation methods.
arXiv Detail & Related papers (2023-12-26T06:31:28Z) - DREAM: Domain-free Reverse Engineering Attributes of Black-box Model [51.37041886352823]
We propose a new problem of Domain-agnostic Reverse Engineering the Attributes of a black-box target model.
We learn a domain-agnostic model to infer the attributes of a target black-box model with unknown training data.
arXiv Detail & Related papers (2023-07-20T16:25:58Z) - Enhancing Black-Box Few-Shot Text Classification with Prompt-Based Data
Augmentation [42.05617728412819]
We show how to optimize few-shot text classification without accessing the gradients of the large-scale language models.
Our approach, dubbed BT-Classifier, significantly outperforms state-of-the-art black-box few-shot learners.
arXiv Detail & Related papers (2023-05-23T07:54:34Z) - How to Robustify Black-Box ML Models? A Zeroth-Order Optimization
Perspective [74.47093382436823]
We address the problem of black-box defense: How to robustify a black-box model using just input queries and output feedback?
We propose a general notion of defensive operation that can be applied to black-box models, and design it through the lens of denoised smoothing (DS)
We empirically show that ZO-AE-DS can achieve improved accuracy, certified robustness, and query complexity over existing baselines.
arXiv Detail & Related papers (2022-03-27T03:23:32Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Few-Shot Lifelong Learning [35.05196800623617]
Few-Shot Lifelong Learning enables deep learning models to perform lifelong/continual learning on few-shot data.
Our method selects very few parameters from the model for training every new set of classes instead of training the full model.
We experimentally show that our method significantly outperforms existing methods on the miniImageNet, CIFAR-100, and CUB-200 datasets.
arXiv Detail & Related papers (2021-03-01T13:26:57Z) - Design of Dynamic Experiments for Black-Box Model Discrimination [72.2414939419588]
Consider a dynamic model discrimination setting where we wish to chose: (i) what is the best mechanistic, time-varying model and (ii) what are the best model parameter estimates.
For rival mechanistic models where we have access to gradient information, we extend existing methods to incorporate a wider range of problem uncertainty.
We replace these black-box models with Gaussian process surrogate models and thereby extend the model discrimination setting to additionally incorporate rival black-box model.
arXiv Detail & Related papers (2021-02-07T11:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.