On the Opportunities of Large Language Models for Programming Process Data
- URL: http://arxiv.org/abs/2411.00414v1
- Date: Fri, 01 Nov 2024 07:20:01 GMT
- Title: On the Opportunities of Large Language Models for Programming Process Data
- Authors: John Edwards, Arto Hellas, Juho Leinonen,
- Abstract summary: We discuss opportunities of using large language models for analyzing programming process data.
To complement our discussion, we outline a case study where we have leveraged LLMs for automatically summarizing the programming process.
- Score: 6.023152721616896
- License:
- Abstract: Computing educators and researchers have used programming process data to understand how programs are constructed and what sorts of problems students struggle with. Although such data shows promise for using it for feedback, fully automated programming process feedback systems have still been an under-explored area. The recent emergence of large language models (LLMs) have yielded additional opportunities for researchers in a wide variety of fields. LLMs are efficient at transforming content from one format to another, leveraging the body of knowledge they have been trained with in the process. In this article, we discuss opportunities of using LLMs for analyzing programming process data. To complement our discussion, we outline a case study where we have leveraged LLMs for automatically summarizing the programming process and for creating formative feedback on the programming process. Overall, our discussion and findings highlight that the computing education research and practice community is again one step closer to automating formative programming process-focused feedback.
Related papers
- Studying and Benchmarking Large Language Models For Log Level Suggestion [49.176736212364496]
Large Language Models (LLMs) have become a focal point of research across various domains.
This paper investigates the impact of characteristics and learning paradigms on the performance of 12 open-source LLMs in log level suggestion.
arXiv Detail & Related papers (2024-10-11T03:52:17Z) - Evaluating Language Models for Generating and Judging Programming Feedback [4.743413681603463]
Large language models (LLMs) have transformed research and practice across a wide range of domains.
We evaluate the efficiency of open-source LLMs in generating high-quality feedback for programming assignments.
arXiv Detail & Related papers (2024-07-05T21:44:11Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Let's Ask AI About Their Programs: Exploring ChatGPT's Answers To Program Comprehension Questions [2.377308748205625]
We explore the capability of the state-of-the-art LLMs in answering QLCs that are generated from code that the LLMs have created.
Our results show that although the state-of-the-art LLMs can create programs and trace program execution when prompted, they easily succumb to similar errors that have previously been recorded for novice programmers.
arXiv Detail & Related papers (2024-04-17T20:37:00Z) - CSEPrompts: A Benchmark of Introductory Computer Science Prompts [11.665831944836118]
Recent advances in AI, machine learning, and NLP have led to the development of a new generation of Large Language Models (LLMs)
Commercial applications have made this technology available to the general public, thus making it possible to use LLMs to produce high-quality texts for academic and professional purposes.
Schools and universities are aware of the increasing use of AI-generated content by students and they have been researching the impact of this new technology and its potential misuse.
arXiv Detail & Related papers (2024-04-03T07:55:57Z) - Automated Assessment of Students' Code Comprehension using LLMs [0.3293989832773954]
Large Language Models (LLMs) and encoder-based Semantic Textual Similarity (STS) models are assessed.
Our findings indicate that LLMs, when prompted in few-shot and chain-of-thought setting, perform comparable to fine-tuned encoder-based models in evaluating students' short answers in programming domain.
arXiv Detail & Related papers (2023-12-19T20:39:12Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Next-Step Hint Generation for Introductory Programming Using Large
Language Models [0.8002196839441036]
Large Language Models possess skills such as answering questions, writing essays or solving programming exercises.
This work explores how LLMs can contribute to programming education by supporting students with automated next-step hints.
arXiv Detail & Related papers (2023-12-03T17:51:07Z) - Just Tell Me: Prompt Engineering in Business Process Management [63.08166397142146]
GPT-3 and other language models (LMs) can effectively address various natural language processing (NLP) tasks.
We argue that prompt engineering can help bring the capabilities of LMs to BPM research.
arXiv Detail & Related papers (2023-04-14T14:55:19Z) - Towards Automated Process Planning and Mining [77.34726150561087]
We present a research project in which researchers from the AI and BPM field work jointly together.
We discuss the overall research problem, the relevant fields of research and our overall research framework to automatically derive process models.
arXiv Detail & Related papers (2022-08-18T16:41:22Z) - A Conversational Paradigm for Program Synthesis [110.94409515865867]
We propose a conversational program synthesis approach via large language models.
We train a family of large language models, called CodeGen, on natural language and programming language data.
Our findings show the emergence of conversational capabilities and the effectiveness of the proposed conversational program synthesis paradigm.
arXiv Detail & Related papers (2022-03-25T06:55:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.