Diffusion Models as Network Optimizers: Explorations and Analysis
- URL: http://arxiv.org/abs/2411.00453v5
- Date: Wed, 19 Feb 2025 05:25:27 GMT
- Title: Diffusion Models as Network Optimizers: Explorations and Analysis
- Authors: Ruihuai Liang, Bo Yang, Pengyu Chen, Xianjin Li, Yifan Xue, Zhiwen Yu, Xuelin Cao, Yan Zhang, Mérouane Debbah, H. Vincent Poor, Chau Yuen,
- Abstract summary: generative diffusion models (GDMs) have emerged as a promising new approach to network optimization.
In this study, we first explore the intrinsic characteristics of generative models.
We provide a concise theoretical and intuitive demonstration of the advantages of generative models over discriminative network optimization.
- Score: 71.69869025878856
- License:
- Abstract: Network optimization is a fundamental challenge in the Internet of Things (IoT) network, often characterized by complex features that make it difficult to solve these problems. Recently, generative diffusion models (GDMs) have emerged as a promising new approach to network optimization, with the potential to directly address these optimization problems. However, the application of GDMs in this field is still in its early stages, and there is a noticeable lack of theoretical research and empirical findings. In this study, we first explore the intrinsic characteristics of generative models. Next, we provide a concise theoretical proof and intuitive demonstration of the advantages of generative models over discriminative models in network optimization. Based on this exploration, we implement GDMs as optimizers aimed at learning high-quality solution distributions for given inputs, sampling from these distributions during inference to approximate or achieve optimal solutions. Specifically, we utilize denoising diffusion probabilistic models (DDPMs) and employ a classifier-free guidance mechanism to manage conditional guidance based on input parameters. We conduct extensive experiments across three challenging network optimization problems. By investigating various model configurations and the principles of GDMs as optimizers, we demonstrate the ability to overcome prediction errors and validate the convergence of generated solutions to optimal solutions. We provide code and data at https://github.com/qiyu3816/DiffSG.
Related papers
- Preconditioned Inexact Stochastic ADMM for Deep Model [35.37705488695026]
This paper develops an algorithm, PISA, which enables scalable parallel computing and supports various second-moment schemes.
Grounded in rigorous theoretical guarantees, the algorithm converges under the sole assumption of Lipschitz of the gradient.
Comprehensive experimental evaluations for or fine-tuning diverse FMs, including vision models, large language models, reinforcement learning models, generative adversarial networks, and recurrent neural networks, demonstrate its superior numerical performance compared to various state-of-the-art Directions.
arXiv Detail & Related papers (2025-02-15T12:28:51Z) - GDSG: Graph Diffusion-based Solution Generator for Optimization Problems in MEC Networks [109.17835015018532]
We present a Graph Diffusion-based Solution Generation (GDSG) method.
This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably.
We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions.
arXiv Detail & Related papers (2024-12-11T11:13:43Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
Diffusion generative models can consider a broader range of solutions and exhibit stronger generalization by learning parameters.
We propose a new framework, which leverages intrinsic distribution learning of diffusion generative models to learn high-quality solutions.
arXiv Detail & Related papers (2024-08-13T07:56:21Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
We show how structure can enable sample-efficient data-driven optimization.
We also present a data-driven optimization algorithm that infers the FGM structure itself.
arXiv Detail & Related papers (2024-01-08T22:33:14Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Learning to Solve Routing Problems via Distributionally Robust
Optimization [14.506553345693536]
Recent deep models for solving routing problems assume a single distribution of nodes for training, which severely impairs their cross-distribution generalization ability.
We exploit group distributionally robust optimization (group DRO) to tackle this issue, where we jointly optimize the weights for different groups of distributions and the parameters for the deep model in an interleaved manner during training.
We also design a module based on convolutional neural network, which allows the deep model to learn more informative latent pattern among the nodes.
arXiv Detail & Related papers (2022-02-15T08:06:44Z) - Pretrained Cost Model for Distributed Constraint Optimization Problems [37.79733538931925]
Distributed Constraint Optimization Problems (DCOPs) are an important subclass of optimization problems.
We propose a novel directed acyclic graph schema representation for DCOPs and leverage the Graph Attention Networks (GATs) to embed graph representations.
Our model, GAT-PCM, is then pretrained with optimally labelled data in an offline manner, so as to boost a broad range of DCOP algorithms.
arXiv Detail & Related papers (2021-12-08T09:24:10Z) - Modeling Design and Control Problems Involving Neural Network Surrogates [1.1602089225841632]
We consider nonlinear optimization problems that involve surrogate models represented by neural networks.
We show how to directly embed neural network evaluation into optimization models, highlight a difficulty with this approach that can prevent convergence.
We present two alternative formulations of these problems in the specific case of feedforward neural networks with ReLU activation.
arXiv Detail & Related papers (2021-11-20T01:09:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.