Analyzing Multimodal Integration in the Variational Autoencoder from an Information-Theoretic Perspective
- URL: http://arxiv.org/abs/2411.00522v1
- Date: Fri, 01 Nov 2024 11:43:17 GMT
- Title: Analyzing Multimodal Integration in the Variational Autoencoder from an Information-Theoretic Perspective
- Authors: Carlotta Langer, Yasmin Kim Georgie, Ilja Porohovoj, Verena Vanessa Hafner, Nihat Ay,
- Abstract summary: We analyze how important the integration of the different modalities are for the reconstruction of the input data.
We train networks with four different schedules and analyze them with respect to their capabilities for multimodal integration.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human perception is inherently multimodal. We integrate, for instance, visual, proprioceptive and tactile information into one experience. Hence, multimodal learning is of importance for building robotic systems that aim at robustly interacting with the real world. One potential model that has been proposed for multimodal integration is the multimodal variational autoencoder. A variational autoencoder (VAE) consists of two networks, an encoder that maps the data to a stochastic latent space and a decoder that reconstruct this data from an element of this latent space. The multimodal VAE integrates inputs from different modalities at two points in time in the latent space and can thereby be used as a controller for a robotic agent. Here we use this architecture and introduce information-theoretic measures in order to analyze how important the integration of the different modalities are for the reconstruction of the input data. Therefore we calculate two different types of measures, the first type is called single modality error and assesses how important the information from a single modality is for the reconstruction of this modality or all modalities. Secondly, the measures named loss of precision calculate the impact that missing information from only one modality has on the reconstruction of this modality or the whole vector. The VAE is trained via the evidence lower bound, which can be written as a sum of two different terms, namely the reconstruction and the latent loss. The impact of the latent loss can be weighted via an additional variable, which has been introduced to combat posterior collapse. Here we train networks with four different weighting schedules and analyze them with respect to their capabilities for multimodal integration.
Related papers
- ITCFN: Incomplete Triple-Modal Co-Attention Fusion Network for Mild Cognitive Impairment Conversion Prediction [12.893857146169045]
Alzheimer's disease (AD) is a common neurodegenerative disease among the elderly.
Early prediction and timely intervention of its prodromal stage, mild cognitive impairment (MCI), can decrease the risk of advancing to AD.
arXiv Detail & Related papers (2025-01-20T05:12:31Z) - Any2Any: Incomplete Multimodal Retrieval with Conformal Prediction [17.607392214470295]
We propose Any2Any, a novel retrieval framework that addresses scenarios where both query and reference instances have incomplete modalities.
It calculates pairwise similarities with cross-modal encoders and employs a two-stage calibration process with conformal prediction to align the similarities.
It achieves a Recall@5 of 35% on the KITTI dataset, which is on par with baseline models with complete modalities.
arXiv Detail & Related papers (2024-11-15T17:44:27Z) - HyperMM : Robust Multimodal Learning with Varying-sized Inputs [4.377889826841039]
HyperMM is an end-to-end framework designed for learning with varying-sized inputs.
We introduce a novel strategy for training a universal feature extractor using a conditional hypernetwork.
We experimentally demonstrate the advantages of our method in two tasks: Alzheimer's disease detection and breast cancer classification.
arXiv Detail & Related papers (2024-07-30T12:13:18Z) - Exploring Missing Modality in Multimodal Egocentric Datasets [89.76463983679058]
We introduce a novel concept -Missing Modality Token (MMT)-to maintain performance even when modalities are absent.
Our method mitigates the performance loss, reducing it from its original $sim 30%$ drop to only $sim 10%$ when half of the test set is modal-incomplete.
arXiv Detail & Related papers (2024-01-21T11:55:42Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - General-Purpose Multimodal Transformer meets Remote Sensing Semantic
Segmentation [35.100738362291416]
Multimodal AI seeks to exploit complementary data sources, particularly for complex tasks like semantic segmentation.
Recent trends in general-purpose multimodal networks have shown great potential to achieve state-of-the-art performance.
We propose a UNet-inspired module that employs 3D convolution to encode vital local information and learn cross-modal features simultaneously.
arXiv Detail & Related papers (2023-07-07T04:58:34Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - i-Code: An Integrative and Composable Multimodal Learning Framework [99.56065789066027]
i-Code is a self-supervised pretraining framework where users may flexibly combine the modalities of vision, speech, and language into unified and general-purpose vector representations.
The entire system is pretrained end-to-end with new objectives including masked modality unit modeling and cross-modality contrastive learning.
Experimental results demonstrate how i-Code can outperform state-of-the-art techniques on five video understanding tasks and the GLUE NLP benchmark, improving by as much as 11%.
arXiv Detail & Related papers (2022-05-03T23:38:50Z) - Improving Multimodal fusion via Mutual Dependency Maximisation [5.73995120847626]
Multimodal sentiment analysis is a trending area of research, and the multimodal fusion is one of its most active topic.
In this work, we investigate unexplored penalties and propose a set of new objectives that measure the dependency between modalities.
We demonstrate that our new penalties lead to a consistent improvement (up to $4.3$ on accuracy) across a large variety of state-of-the-art models.
arXiv Detail & Related papers (2021-08-31T06:26:26Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.