Video prediction using score-based conditional density estimation
- URL: http://arxiv.org/abs/2411.00842v1
- Date: Wed, 30 Oct 2024 03:16:35 GMT
- Title: Video prediction using score-based conditional density estimation
- Authors: Pierre-Étienne H. Fiquet, Eero P. Simoncelli,
- Abstract summary: We describe an implicit regression-based framework for learning and sampling the conditional density of the next frame in a video.
We show that sequence-to-image deep networks trained on a simple resilience-to-noise objective function extract adaptive representations for temporal prediction.
- Score: 9.190468260530634
- License:
- Abstract: Temporal prediction is inherently uncertain, but representing the ambiguity in natural image sequences is a challenging high-dimensional probabilistic inference problem. For natural scenes, the curse of dimensionality renders explicit density estimation statistically and computationally intractable. Here, we describe an implicit regression-based framework for learning and sampling the conditional density of the next frame in a video given previous observed frames. We show that sequence-to-image deep networks trained on a simple resilience-to-noise objective function extract adaptive representations for temporal prediction. Synthetic experiments demonstrate that this score-based framework can handle occlusion boundaries: unlike classical methods that average over bifurcating temporal trajectories, it chooses among likely trajectories, selecting more probable options with higher frequency. Furthermore, analysis of networks trained on natural image sequences reveals that the representation automatically weights predictive evidence by its reliability, which is a hallmark of statistical inference
Related papers
- Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
We show that diffusion models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems.
We develop a probabilistic approximation scheme for the conditional score function which converges to the true distribution as the noise level decreases.
We are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
arXiv Detail & Related papers (2023-06-13T03:42:03Z) - Keypoint-Based Category-Level Object Pose Tracking from an RGB Sequence
with Uncertainty Estimation [29.06824085794294]
We propose a category-level 6-DoF pose estimation algorithm that simultaneously detects and tracks instances of objects within a known category.
Our method takes as input the previous and current frame from a monocular video RGB, as well as predictions from the previous frame, to predict the bounding cuboid and pose.
Our framework allows the system take previous uncertainties into consideration when predicting current frame, resulting in predictions that are more accurate stable than single frame methods.
arXiv Detail & Related papers (2022-05-23T05:20:22Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Probabilistic Forecasting with Generative Networks via Scoring Rule
Minimization [5.5643498845134545]
We use generative neural networks to parametrize distributions on high-dimensional spaces by transforming draws from a latent variable.
We train generative networks to minimize a predictive-sequential (or prequential) scoring rule on a recorded temporal sequence of the phenomenon of interest.
Our method outperforms state-of-the-art adversarial approaches, especially in probabilistic calibration.
arXiv Detail & Related papers (2021-12-15T15:51:12Z) - A Hierarchical Variational Neural Uncertainty Model for Stochastic Video
Prediction [45.6432265855424]
We introduce Neural Uncertainty Quantifier (NUQ) - a principled quantification of the model's predictive uncertainty.
Our proposed framework trains more effectively compared to the state-of-theart models.
arXiv Detail & Related papers (2021-10-06T00:25:22Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Scene Uncertainty and the Wellington Posterior of Deterministic Image
Classifiers [68.9065881270224]
We introduce the Wellington Posterior, which is the distribution of outcomes that would have been obtained in response to data that could have been generated by the same scene.
We explore the use of data augmentation, dropout, ensembling, single-view reconstruction, and model linearization to compute a Wellington Posterior.
Additional methods include the use of conditional generative models such as generative adversarial networks, neural radiance fields, and conditional prior networks.
arXiv Detail & Related papers (2021-06-25T20:10:00Z) - Learning Accurate Dense Correspondences and When to Trust Them [161.76275845530964]
We aim to estimate a dense flow field relating two images, coupled with a robust pixel-wise confidence map.
We develop a flexible probabilistic approach that jointly learns the flow prediction and its uncertainty.
Our approach obtains state-of-the-art results on challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-01-05T18:54:11Z) - A deep-learning based Bayesian approach to seismic imaging and
uncertainty quantification [0.4588028371034407]
Uncertainty is essential when dealing with ill-conditioned inverse problems.
It is often not possible to formulate a prior distribution that precisely encodes our prior knowledge about the unknown.
We propose to use the functional form of a randomly convolutional neural network as an implicit structured prior.
arXiv Detail & Related papers (2020-01-13T23:46:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.