End-to-end Graph Learning Approach for Cognitive Diagnosis of Student Tutorial
- URL: http://arxiv.org/abs/2411.00845v1
- Date: Wed, 30 Oct 2024 06:18:47 GMT
- Title: End-to-end Graph Learning Approach for Cognitive Diagnosis of Student Tutorial
- Authors: Fulai Yang, Di Wu, Yi He, Li Tao, Xin Luo,
- Abstract summary: This paper proposes an End-to-end Graph Neural Networks-based Cognitive Diagnosis (EGNN-CD) model.
EGNN-CD consists of three main parts: knowledge concept network (KCN), graph neural networks-based feature extraction (GNNFE), and cognitive ability prediction (CAP)
- Score: 11.670969577565774
- License:
- Abstract: Cognitive diagnosis (CD) utilizes students' existing studying records to estimate their mastery of unknown knowledge concepts, which is vital for evaluating their learning abilities. Accurate CD is extremely challenging because CD is associated with complex relationships and mechanisms among students, knowledge concepts, studying records, etc. However, existing approaches loosely consider these relationships and mechanisms by a non-end-to-end learning framework, resulting in sub-optimal feature extractions and fusions for CD. Different from them, this paper innovatively proposes an End-to-end Graph Neural Networks-based Cognitive Diagnosis (EGNN-CD) model. EGNN-CD consists of three main parts: knowledge concept network (KCN), graph neural networks-based feature extraction (GNNFE), and cognitive ability prediction (CAP). First, KCN constructs CD-related interaction by comprehensively extracting physical information from students, exercises, and knowledge concepts. Second, a four-channel GNNFE is designed to extract high-order and individual features from the constructed KCN. Finally, CAP employs a multi-layer perceptron to fuse the extracted features to predict students' learning abilities in an end-to-end learning way. With such designs, the feature extractions and fusions are guaranteed to be comprehensive and optimal for CD. Extensive experiments on three real datasets demonstrate that our EGNN-CD achieves significantly higher accuracy than state-of-the-art models in CD.
Related papers
- A Dual-Fusion Cognitive Diagnosis Framework for Open Student Learning Environments [10.066184572184627]
This paper proposes a dual-fusion cognitive diagnosis framework (DFCD) to address the challenge of aligning two different modalities.
Experiments show that DFCD achieves superior performance by integrating different modalities and strong adaptability in open student learning environments.
arXiv Detail & Related papers (2024-10-19T10:12:02Z) - Inductive Cognitive Diagnosis for Fast Student Learning in Web-Based Online Intelligent Education Systems [9.907875032214996]
This paper proposes an inductive cognitive diagnosis model (ICDM) for fast new students' mastery levels inference in WOIESs.
To obtain this representation, ICDM consists of a construction-aggregation-generation-transformation process.
Experiments across real-world datasets show that, compared with the existing cognitive diagnosis methods that are always transductive, ICDM is much more faster.
arXiv Detail & Related papers (2024-04-17T11:55:43Z) - Improving Cognitive Diagnosis Models with Adaptive Relational Graph Neural Networks [33.76551090755183]
Cognitive Diagnosis (CD) algorithms assist students by inferring their abilities on various knowledge concepts.
Recently, researchers have found that building and incorporating a student-exercise bipartite graph is beneficial for enhancing diagnostic performance.
We propose Adaptive Semantic-aware Graph-based Cognitive Diagnosis model (ASG-CD), which introduces a novel and effective way to leverage bipartite graph information in CD.
arXiv Detail & Related papers (2024-02-15T14:12:38Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - Brain Networks and Intelligence: A Graph Neural Network Based Approach to Resting State fMRI Data [2.193937336601403]
We present a novel modeling architecture called BrainRGIN for predicting intelligence (fluid, crystallized, and total intelligence) using graph neural networks on rsfMRI derived connectivity matrices.
Our approach incorporates a clustering-based embedding and graph isomorphism network in the graph convolutional layer to reflect the nature of the brain sub-network organization.
arXiv Detail & Related papers (2023-11-06T20:58:07Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
How humans understand and recognize the actions of others is a complex neuroscientific problem.
LA-GCN proposes a graph convolution network using large-scale language models (LLM) knowledge assistance.
arXiv Detail & Related papers (2023-05-21T08:29:16Z) - Learning Knowledge Representation with Meta Knowledge Distillation for
Single Image Super-Resolution [82.89021683451432]
We propose a model-agnostic meta knowledge distillation method under the teacher-student architecture for the single image super-resolution task.
Experiments conducted on various single image super-resolution datasets demonstrate that our proposed method outperforms existing defined knowledge representation related distillation methods.
arXiv Detail & Related papers (2022-07-18T02:41:04Z) - Data-Free Adversarial Knowledge Distillation for Graph Neural Networks [62.71646916191515]
We propose the first end-to-end framework for data-free adversarial knowledge distillation on graph structured data (DFAD-GNN)
To be specific, our DFAD-GNN employs a generative adversarial network, which mainly consists of three components: a pre-trained teacher model and a student model are regarded as two discriminators, and a generator is utilized for deriving training graphs to distill knowledge from the teacher model into the student model.
Our DFAD-GNN significantly surpasses state-of-the-art data-free baselines in the graph classification task.
arXiv Detail & Related papers (2022-05-08T08:19:40Z) - CogNGen: Constructing the Kernel of a Hyperdimensional Predictive
Processing Cognitive Architecture [79.07468367923619]
We present a new cognitive architecture that combines two neurobiologically plausible, computational models.
We aim to develop a cognitive architecture that has the power of modern machine learning techniques.
arXiv Detail & Related papers (2022-03-31T04:44:28Z) - Distilling Holistic Knowledge with Graph Neural Networks [37.86539695906857]
Knowledge Distillation (KD) aims at transferring knowledge from a larger well-optimized teacher network to a smaller learnable student network.
Existing KD methods have mainly considered two types of knowledge, namely the individual knowledge and the relational knowledge.
We propose to distill the novel holistic knowledge based on an attributed graph constructed among instances.
arXiv Detail & Related papers (2021-08-12T02:47:59Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
We propose an extension of KENN for relational data.
The results show that KENN is capable of increasing the performances of the underlying neural network even in the presence relational data.
arXiv Detail & Related papers (2020-09-13T21:12:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.