Explainable Artificial Intelligence for Dependent Features: Additive Effects of Collinearity
- URL: http://arxiv.org/abs/2411.00846v1
- Date: Wed, 30 Oct 2024 07:00:30 GMT
- Title: Explainable Artificial Intelligence for Dependent Features: Additive Effects of Collinearity
- Authors: Ahmed M Salih,
- Abstract summary: We propose an Additive Effects of Collinearity (AEC) as a novel XAI method to consider the collinearity issue.
The proposed method is implemented using simulated and real data to validate its efficiency comparing with the a state of arts XAI method.
- Score: 0.0
- License:
- Abstract: Explainable Artificial Intelligence (XAI) emerged to reveal the internal mechanism of machine learning models and how the features affect the prediction outcome. Collinearity is one of the big issues that XAI methods face when identifying the most informative features in the model. Current XAI approaches assume the features in the models are independent and calculate the effect of each feature toward model prediction independently from the rest of the features. However, such assumption is not realistic in real life applications. We propose an Additive Effects of Collinearity (AEC) as a novel XAI method that aim to considers the collinearity issue when it models the effect of each feature in the model on the outcome. AEC is based on the idea of dividing multivariate models into several univariate models in order to examine their impact on each other and consequently on the outcome. The proposed method is implemented using simulated and real data to validate its efficiency comparing with the a state of arts XAI method. The results indicate that AEC is more robust and stable against the impact of collinearity when it explains AI models compared with the state of arts XAI method.
Related papers
- Robustness of Explainable Artificial Intelligence in Industrial Process Modelling [43.388607981317016]
We evaluate current XAI methods by scoring them based on ground truth simulations and sensitivity analysis.
We show the differences between XAI methods in their ability to correctly predict the true sensitivity of the modeled industrial process.
arXiv Detail & Related papers (2024-07-12T09:46:26Z) - Unified Explanations in Machine Learning Models: A Perturbation Approach [0.0]
Inconsistencies between XAI and modeling techniques can have the undesirable effect of casting doubt upon the efficacy of these explainability approaches.
We propose a systematic, perturbation-based analysis against a popular, model-agnostic method in XAI, SHapley Additive exPlanations (Shap)
We devise algorithms to generate relative feature importance in settings of dynamic inference amongst a suite of popular machine learning and deep learning methods, and metrics that allow us to quantify how well explanations generated under the static case hold.
arXiv Detail & Related papers (2024-05-30T16:04:35Z) - Characterizing the contribution of dependent features in XAI methods [6.990173577370281]
We propose a proxy that modifies the outcome of any XAI feature ranking method allowing to account for the dependency among the predictors.
The proposed approach has the advantage of being model-agnostic as well as simple to calculate the impact of each predictor in the model in presence of collinearity.
arXiv Detail & Related papers (2023-04-04T11:25:57Z) - AUTOLYCUS: Exploiting Explainable AI (XAI) for Model Extraction Attacks against Interpretable Models [1.8752655643513647]
XAI tools can increase the vulnerability of model extraction attacks, which is a concern when model owners prefer black-box access.
We propose a novel retraining (learning) based model extraction attack framework against interpretable models under black-box settings.
We show that AUTOLYCUS is highly effective, requiring significantly fewer queries compared to state-of-the-art attacks.
arXiv Detail & Related papers (2023-02-04T13:23:39Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
We conduct a systematic comparison of different modelling approaches, across multiple modelling problems, in terms of the key factors likely to affect model choice.
Results indicate that the models with the highest disaggregate predictive performance provide poorer estimates of behavioural indicators and aggregate mode shares.
It is also observed that the MNL model performs robustly in a variety of situations, though ML techniques can improve the estimates of behavioural indices such as Willingness to Pay.
arXiv Detail & Related papers (2023-01-11T11:10:32Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.