Automatic feature selection and weighting using Differentiable Information Imbalance
- URL: http://arxiv.org/abs/2411.00851v1
- Date: Wed, 30 Oct 2024 11:19:10 GMT
- Title: Automatic feature selection and weighting using Differentiable Information Imbalance
- Authors: Romina Wild, Vittorio Del Tatto, Felix Wodaczek, Bingqing Cheng, Alessandro Laio,
- Abstract summary: We introduce the Differentiable Information Imbalance (DII), an automatic data analysis method to rank information content between sets of features.
Based on the nearest neighbors according to distances in the ground truth feature space, the method finds a low-dimensional subset of the input features.
By employing the Differentiable Information Imbalance as a loss function, the relative feature weights of the inputs are optimized, simultaneously performing unit alignment and relative importance scaling.
- Score: 41.452380773977154
- License:
- Abstract: Feature selection is a common process in many applications, but it is accompanied by uncertainties such as: What is the optimal dimensionality of an interpretable, reduced feature space to retain a maximum amount of information? How to account for different units of measure in features? How to weight different features according to their importance? To address these challenges, we introduce the Differentiable Information Imbalance (DII), an automatic data analysis method to rank information content between sets of features. Based on the nearest neighbors according to distances in the ground truth feature space, the method finds a low-dimensional subset of the input features, within which the pairwise distance relations are most similar to the ground truth. By employing the Differentiable Information Imbalance as a loss function, the relative feature weights of the inputs are optimized, simultaneously performing unit alignment and relative importance scaling, while preserving interpretability. Furthermore, this method can generate sparse solutions and determine the optimal size of the reduced feature space. We illustrate the usefulness of this approach on two prototypical benchmark problems: (1) Identifying a small set of collective variables capable of describing the conformational space of a biomolecule, and (2) selecting a subset of features for training a machine-learning force field. The results highlight the potential of the Differentiable Information Imbalance in addressing feature selection challenges and optimizing dimensionality in various applications. The method is implemented in the Python library DADApy.
Related papers
- Nonlinear Feature Aggregation: Two Algorithms driven by Theory [45.3190496371625]
Real-world machine learning applications are characterized by a huge number of features, leading to computational and memory issues.
We propose a dimensionality reduction algorithm (NonLinCFA) which aggregates non-linear transformations of features with a generic aggregation function.
We also test the algorithms on synthetic and real-world datasets, performing regression and classification tasks, showing competitive performances.
arXiv Detail & Related papers (2023-06-19T19:57:33Z) - Selecting Features by their Resilience to the Curse of Dimensionality [0.0]
Real-world datasets are often of high dimension and effected by the curse of dimensionality.
Here we step in with a novel method that identifies the features that allow to discriminate data subsets of different sizes.
Our experiments show that our method is competitive and commonly outperforms established feature selection methods.
arXiv Detail & Related papers (2023-04-05T14:26:23Z) - Interpretable Linear Dimensionality Reduction based on Bias-Variance
Analysis [45.3190496371625]
We propose a principled dimensionality reduction approach that maintains the interpretability of the resulting features.
In this way, all features are considered, the dimensionality is reduced and the interpretability is preserved.
arXiv Detail & Related papers (2023-03-26T14:30:38Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
We propose a novel approach to identify meaningful and independent factors of variation in a dataset.
Our method involves two separate latent subspaces for the target property and the remaining input information.
We demonstrate on synthetic and molecular data that our approach identifies more meaningful factors which lead to sparser and more interpretable models.
arXiv Detail & Related papers (2021-11-25T17:33:12Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
We propose the Feature weighted Non-negative Matrix Factorization (FNMF) in this paper.
FNMF learns the weights of features adaptively according to their importances.
It can be solved efficiently with the suggested optimization algorithm.
arXiv Detail & Related papers (2021-03-24T21:17:17Z) - Feature Selection Using Reinforcement Learning [0.0]
The space of variables or features that can be used to characterize a particular predictor of interest continues to grow exponentially.
Identifying the most characterizing features that minimizes the variance without jeopardizing the bias of our models is critical to successfully training a machine learning model.
arXiv Detail & Related papers (2021-01-23T09:24:37Z) - The role of feature space in atomistic learning [62.997667081978825]
Physically-inspired descriptors play a key role in the application of machine-learning techniques to atomistic simulations.
We introduce a framework to compare different sets of descriptors, and different ways of transforming them by means of metrics and kernels.
We compare representations built in terms of n-body correlations of the atom density, quantitatively assessing the information loss associated with the use of low-order features.
arXiv Detail & Related papers (2020-09-06T14:12:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.