Profiling AI Models: Towards Efficient Computation Offloading in Heterogeneous Edge AI Systems
- URL: http://arxiv.org/abs/2411.00859v1
- Date: Wed, 30 Oct 2024 16:07:14 GMT
- Title: Profiling AI Models: Towards Efficient Computation Offloading in Heterogeneous Edge AI Systems
- Authors: Juan Marcelo Parra-Ullauri, Oscar Dilley, Hari Madhukumar, Dimitra Simeonidou,
- Abstract summary: We propose a research roadmap focused on profiling AI models, capturing data about model types and underlying hardware to predict resource utilisation and task completion time.
Experiments with over 3,000 runs show promise in optimising resource allocation and enhancing Edge AI performance.
- Score: 0.2357055571094446
- License:
- Abstract: The rapid growth of end-user AI applications, such as computer vision and generative AI, has led to immense data and processing demands often exceeding user devices' capabilities. Edge AI addresses this by offloading computation to the network edge, crucial for future services in 6G networks. However, it faces challenges such as limited resources during simultaneous offloads and the unrealistic assumption of homogeneous system architecture. To address these, we propose a research roadmap focused on profiling AI models, capturing data about model types, hyperparameters, and underlying hardware to predict resource utilisation and task completion time. Initial experiments with over 3,000 runs show promise in optimising resource allocation and enhancing Edge AI performance.
Related papers
- Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI (GenAI) has emerged as a transformative technology, enabling customized and personalized AI-generated content (AIGC) services.
These services require executing GenAI models with billions of parameters, posing significant obstacles to resource-limited wireless edge.
We introduce the formulation of joint model caching and resource allocation for AIGC services to balance a trade-off between AIGC quality and latency metrics.
arXiv Detail & Related papers (2024-11-03T07:01:13Z) - Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AI is a rapidly advancing field that bridges the gap between cyberspace and physical space.
In VEANET, embodied AI twins act as in-vehicle AI assistants to perform diverse tasks supporting autonomous driving.
arXiv Detail & Related papers (2024-10-02T02:20:42Z) - Resource-Efficient Generative AI Model Deployment in Mobile Edge Networks [15.958822667638405]
The scarcity of available resources on the edge pose significant challenges in deploying generative AI models.
We present a collaborative edge-cloud framework aiming to properly manage generative AI model deployment on the edge.
arXiv Detail & Related papers (2024-09-09T03:17:28Z) - Adaptation of XAI to Auto-tuning for Numerical Libraries [0.0]
Explainable AI (XAI) technology is gaining prominence, aiming to streamline AI model development and alleviate the burden of explaining AI outputs to users.
This research focuses on XAI for AI models when integrated into two different processes for practical numerical computations.
arXiv Detail & Related papers (2024-05-12T09:00:56Z) - Uncertainty Estimation in Multi-Agent Distributed Learning for AI-Enabled Edge Devices [0.0]
Edge IoT devices have seen a paradigm shift with the introduction of FPGAs and AI accelerators.
This advancement has vastly amplified their computational capabilities, emphasizing the practicality of edge AI.
Our study explores methods that enable distributed data processing through AI-enabled edge devices, enhancing collaborative learning capabilities.
arXiv Detail & Related papers (2024-03-14T07:40:32Z) - Offloading and Quality Control for AI Generated Content Services in 6G Mobile Edge Computing Networks [18.723955271182007]
This paper proposes a joint optimization algorithm for offloading decisions, computation time, and diffusion steps of the diffusion models in the reverse diffusion stage.
Experimental results conclusively demonstrate that the proposed algorithm achieves superior joint optimization performance compared to the baselines.
arXiv Detail & Related papers (2023-12-11T08:36:27Z) - Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks [68.00382171900975]
In wireless edge networks, the transmission of incorrectly generated content may unnecessarily consume network resources.
We present the AIGC-as-a-service concept and discuss the challenges in deploying A at the edge networks.
We propose a deep reinforcement learning-enabled algorithm for optimal ASP selection.
arXiv Detail & Related papers (2023-01-09T09:30:23Z) - In-situ Model Downloading to Realize Versatile Edge AI in 6G Mobile
Networks [61.416494781759326]
In-situ model downloading aims to achieve transparent and real-time replacement of on-device AI models by downloading from an AI library in the network.
A key component of the presented framework is a set of techniques that dynamically compress a downloaded model at the depth-level, parameter-level, or bit-level.
We propose a 6G network architecture customized for deploying in-situ model downloading with the key feature of a three-tier (edge, local, and central) AI library.
arXiv Detail & Related papers (2022-10-07T13:41:15Z) - ProcTHOR: Large-Scale Embodied AI Using Procedural Generation [55.485985317538194]
ProcTHOR is a framework for procedural generation of Embodied AI environments.
We demonstrate state-of-the-art results across 6 embodied AI benchmarks for navigation, rearrangement, and arm manipulation.
arXiv Detail & Related papers (2022-06-14T17:09:35Z) - How to Reach Real-Time AI on Consumer Devices? Solutions for
Programmable and Custom Architectures [7.085772863979686]
Deep neural networks (DNNs) have led to large strides in various Artificial Intelligence (AI) inference tasks, such as object and speech recognition.
deploying such AI models across commodity devices faces significant challenges.
We present techniques for achieving real-time performance following a cross-stack approach.
arXiv Detail & Related papers (2021-06-21T11:23:12Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.