A Similarity-Based Oversampling Method for Multi-label Imbalanced Text Data
- URL: http://arxiv.org/abs/2411.01013v2
- Date: Thu, 14 Nov 2024 14:23:29 GMT
- Title: A Similarity-Based Oversampling Method for Multi-label Imbalanced Text Data
- Authors: Ismail Hakki Karaman, Gulser Koksal, Levent Eriskin, Salih Salihoglu,
- Abstract summary: This study introduces and examines a novel oversampling method for multi-label text classification.
The proposed method identifies potential new samples from unlabeled data by leveraging similarity measures between instances.
By iteratively searching the unlabeled dataset, the method locates instances similar to those in underrepresented classes.
Instances that demonstrate performance improvement are then added to the labeled dataset.
- Score: 1.799933345199395
- License:
- Abstract: In real-world applications, as data availability increases, obtaining labeled data for machine learning (ML) projects remains challenging due to the high costs and intensive efforts required for data annotation. Many ML projects, particularly those focused on multi-label classification, also grapple with data imbalance issues, where certain classes may lack sufficient data to train effective classifiers. This study introduces and examines a novel oversampling method for multi-label text classification, designed to address performance challenges associated with data imbalance. The proposed method identifies potential new samples from unlabeled data by leveraging similarity measures between instances. By iteratively searching the unlabeled dataset, the method locates instances similar to those in underrepresented classes and evaluates their contribution to classifier performance enhancement. Instances that demonstrate performance improvement are then added to the labeled dataset. Experimental results indicate that the proposed approach effectively enhances classifier performance post-oversampling.
Related papers
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
In open-set scenarios, the unlabeled dataset contains both in-distribution (ID) classes and out-of-distribution (OOD) classes.
Applying semi-supervised detectors in such settings can lead to misclassifying OOD class as ID classes.
We propose a simple yet effective method, termed Collaborative Feature-Logits Detector (CFL-Detector)
arXiv Detail & Related papers (2024-11-20T02:57:35Z) - Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.
Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.
We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - Complementary Labels Learning with Augmented Classes [22.460256396941528]
Complementary Labels Learning (CLL) arises in many real-world tasks such as private questions classification and online learning.
We propose a novel problem setting called Complementary Labels Learning with Augmented Classes (CLLAC)
By using unlabeled data, we propose an unbiased estimator of classification risk for CLLAC, which is guaranteed to be provably consistent.
arXiv Detail & Related papers (2022-11-19T13:55:27Z) - Class-Imbalanced Complementary-Label Learning via Weighted Loss [8.934943507699131]
Complementary-label learning (CLL) is widely used in weakly supervised classification.
It faces a significant challenge in real-world datasets when confronted with class-imbalanced training samples.
We propose a novel problem setting that enables learning from class-imbalanced complementary labels for multi-class classification.
arXiv Detail & Related papers (2022-09-28T16:02:42Z) - Active Learning by Feature Mixing [52.16150629234465]
We propose a novel method for batch active learning called ALFA-Mix.
We identify unlabelled instances with sufficiently-distinct features by seeking inconsistencies in predictions.
We show that inconsistencies in these predictions help discovering features that the model is unable to recognise in the unlabelled instances.
arXiv Detail & Related papers (2022-03-14T12:20:54Z) - A Novel Perspective for Positive-Unlabeled Learning via Noisy Labels [49.990938653249415]
This research presents a methodology that assigns initial pseudo-labels to unlabeled data which is used as noisy-labeled data, and trains a deep neural network using the noisy-labeled data.
Experimental results demonstrate that the proposed method significantly outperforms the state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-03-08T11:46:02Z) - Multi-Label Sampling based on Local Label Imbalance [7.355362369511579]
Class imbalance is an inherent characteristic of multi-label data that hinders most multi-label learning methods.
Existing multi-label sampling approaches alleviate the global imbalance of multi-label datasets.
It is actually the imbalance level within the local neighbourhood of minority class examples that plays a key role in performance degradation.
arXiv Detail & Related papers (2020-05-07T04:14:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.